

Membership Benefits

- Free online subscription to Clinical Lymphoma and Myeloma
- Access to the "updated summaries" and slides from the most relevant presentations at ASH, ASCO, EHA, and more
- Sponsor abstract at IMW
- Discounted registration at IMW and IMS sponsored events
- Eligible for Travel Award
- Eligible to be a candidate for Board of Directors, Subcommittee's, Awards, Travel Grants, Host the IMW
- An effective voice for myeloma advocacy

Waldenström Award

• Awarded to an individual in recognition of outstanding contributions to the field of multiple myeloma

Two young Investigator awards

Bart Barlogie (clinical and therapeutic research) Ken Anderson (basic and transitional research)

Travel Grants

ASH/ ASCO/ EHA Updates

Multiple Myeloma: Clinical Updates from the American Society of Hematology Annual Meeting 2016 Evangelos Terpos

Slide collection of best of ASH 2016 Marivi Mateos

Educational Seminars in emerging countries

Grants for short training periods

2017-19 Officers IMS

President

Jesús San Miguel , MD University Navarra Salamanca, Spain president@myelomasociety.org

Vice-President Nikhil C. Munshi, MD Dana Farber Cancer Institute Boston, MA vicepresident@myelomasociety.org

Robert A. Kyle, M.D. Honorary Board Member Mayo Clinic, Rochester, MN

Secretary Sagar Lonial, MD Emory University Atlanta, GA secretary@myelomasociety.org

Treasurer Shaji Kumar, MD Mayo Clinic, Hematology Rochester, MN treasurer@myelomasociety.org

Kenneth C. Anderson, MD Immediate Past President Dana-Farber Cancer Institute Boston, MA

Board of Directors IMS 2017-2019

Wee Joo Chng, MD National University Cancer Institute of Singapore (NCIS) Singapore

Váania Hungira, MD Santa Casa Medical School São Paulo, Brazil

Douglas Joshua, MD Royal Prince Alfred Hospital Sydney, Australia

Maria V Mateos, MD University of Salamanca Salamanca, Spain Giampolo Merlini, MD University of Pavia Pavia, Italy

Philippe Moreau, MD University Hospital of Nantes Nantes, France

Noopur S. Raje, MD Massachusetts General Hospital Cancer Center at Harvard Medical School Boston, MA

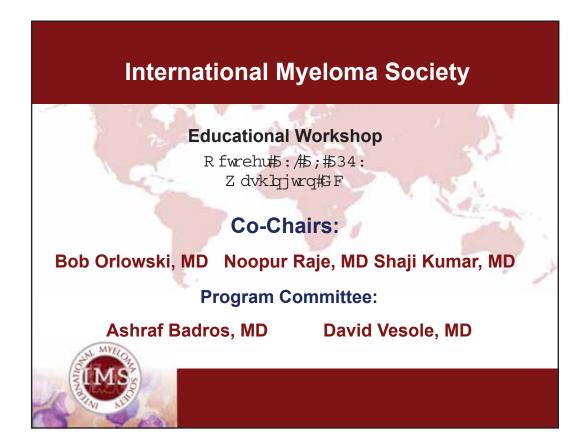
Donna Reece, MD Princess Margaret Hospital Toronto, Canada

17th International Myeloma Workshop

September, 2019 - Boston, MA, USA

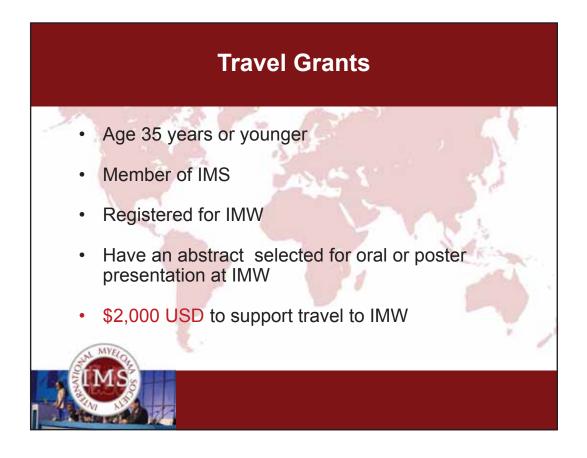
Co-Chairs:

• Steven Treon, M.D., Paul Richardson, M.D.,


Ken Anderson, M.D., Nikhil Munshi, M.D., Irene Ghobrial, M.D., Ruben Carrasco, M.D., Constanitne

Mitsiades, M.D., David Avigan, M.D., Noopur Raje, M.D.

• http://imw2019boston.org/



Two young Investigator awards: Bart Barlogie (clinical and therapeutic research) Ken Anderson (basic and transitional research)

- Established by IMS to honor the seminal contributions of Professor Bart Barlogie and Ken Anderson
- Awarded to an individual (< 45 years old) to both recognize and stimulate excellence in myeloma research
- The Awards Subcommittee elaborated the basis for a structured Document of Merit (CV).
- The members of the IMS Board and the Awards Subcommittee are the electors
- **\$25,000 USD** to support the Award winner's research.

Waldenström Award

The Awards Subcommittee:

The Awards Subcommittee elaborated the basis for a structured Document of Merit (CV) to be asked to the potential nominees and the selection process.

Composed of 10 recognized persons in the myeloma field and also representing different geographical areas.

The current composition is Douglas Joshua, Chair, Robert Kyle, Hirokazu Murakami, Gareth Morgan, Mario Boccadoro, Paul Richardson, Heinz Ludwig, Donna Reece, Michel Attal, and Vania Hungria.

Subcommittees		
	<mark>hittee</mark> – Shaji Kumar jela Dispenzieri, Angelo Maiolino	
	<mark>mmittee</mark> – Donna Reece & Giampaolo Merlini (co-chair) , Vania Hungria, Sonja Zweegman	
Philippe Moreau,	<mark>nittee</mark> – Nikhil Munshi Herman Einsele, Irene Ghobrial, Maria Victo ia Matoes, Joy Robert Orlowski, Sundar Jagannath	
Hirokazu Muraka	t ee – Douglas Joshua & Robert Kyle (co-chair), ni, Gareth Morgan, Mario Boccadoro, Paul Richardson, Heinz tal, Vania Hungria, Donna Reece	
Tierry Facon, Ang	m <mark>ittee-</mark> Sagar Lonial g la Dispenzieri, Giampaolo Merlini, Meletios Athanassios /- Treon, Vincent Rajkumar	
Michele Cavo, He	niltee- Philippe Voreau rvv, Arvt-Loiseau, Faith Davies, Keith Stevart, Piliter I Munshi, woopur Naje, Wee Joe Chag	

Membership Committee

Chair: Donna Reece Co-Chair: Giompaolo Merlini (co-chair) Kazuyuki Shimizu Vania Hungria Sonja Zweegman

Mission: Develop new and innovative ways to attract new members as well as retain current membership via multiple mediums including the webpage of the Society.

Education Committee

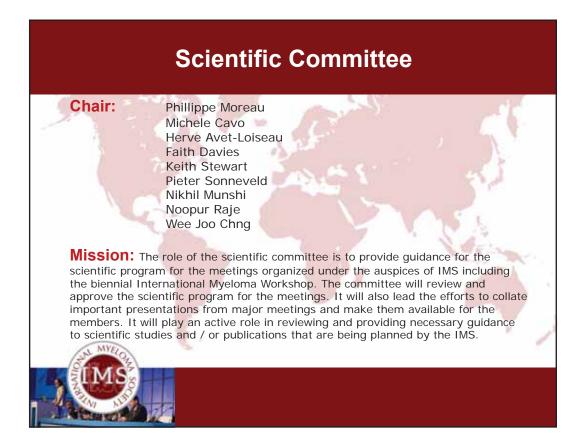
Chair:

Nikhil Munshi Herman Einsele Irene Ghobrial Joy Ho Robert Orlowski

Philippe Moreau Maria Victoria Mateos-Manteca Donna Reece Sundar Jagannah, MD

Mission: The central role of the educational committee o provide, through various means in yeloma related education to both healthcare providers as well as patients. This committee will develop and organize various printed, electronic, social media, and educational seminars to present state-of-the-art information on myeloma therapies and patient management. It will also support development of programs and various activities to promote basic laboratory research as well as translational applications. It will supervise various educational programs globally on a yearly basis following major bematologic and/or oncology neelings (ASCO, ASH, form the physicians about advances in myelo na as well as EHA and IMW to i providing gui ignostic and the means available. anc ilizin the nove 6 apeut

Awards Committee		
Waldenström's Anderson Trars	Douglas Joshua Co-Chair: Robert Kyle Hirokazu Murakami Gareth Morgan Mario Boccadoro Paul Richardson Heinz Ludwig Michel Attal Vania Hungria Donna Reece To establish the application process for the three major awards, the avard, the Bart Barlogie Clinical Therapeutic award and the Ken Islaional Research award, given in recognition of the seminal here physicians have made to the understanding and therapy of	
myeloma. In a	nddition, we have established travel awards for young investigators tter dance at the inveloma workshop, the premier myeloma meeting	


Workshop Committee

Chair:

Sagar Lonial Tierry Facon Angela Dispenzieri Giampaolo Merlini Meletios-Athanassios Dimopoulos Steve Treon Vincent Rajkumar

Mission: To standardize and organize decision making around evaluation of IMW Organizing Committee and locations. This committee will solicit applications, evaluate applications, and score applications with the intent of objectively and transparently deciding which city and group will be awarded the opportunity to host the International Myeloma Workshop in odd calendar years.

IMS and the International Myeloma Workshop

Scientific Program

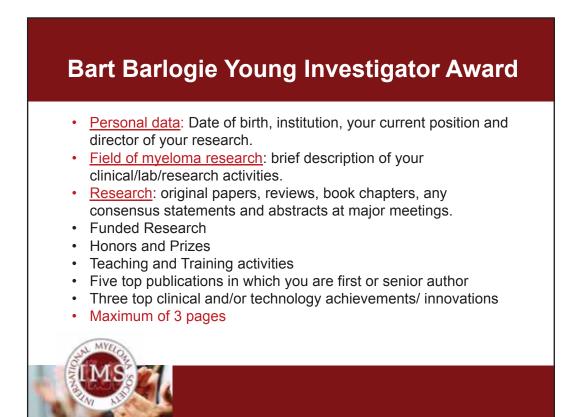
Provides assistance in defining the breadth and quality of content represented at the International Myeloma Workshops to include cutting-edge scientific and clinical advances, as well as all aspects of current diagnosis, prognosis, and treatment of myeloma.

Applying to Host IMW

 Deadline for proposals November 1, 2017 - There is no application form but we invite you to submit an outline proposal – no more than 6 pages – which addresses the areas identified below.

Criteria for hosting IMW meeting includes:

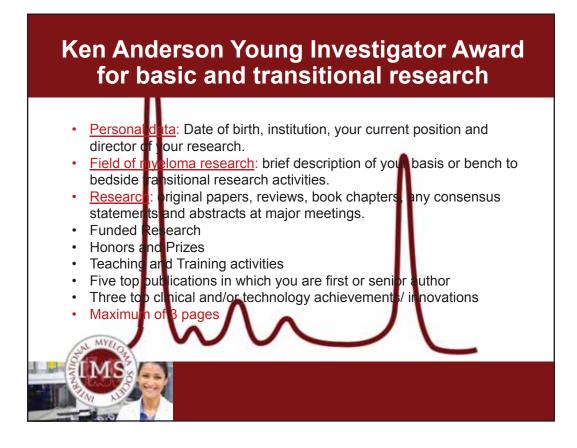
- Meeting Space One should plan for up to 3,000 attendees.
- Accommodations There should be approximately 2,500 sleeping rooms within easy commuting distance.
- Transportation The host city should be within one hour from a major International airport.


<section-header><section-header><list-item><list-item><list-item><list-item><list-item>

<section-header><section-header><list-item><list-item><list-item>

Bart Barlogie Young Investigator Award

Application Evaluation


Each eligible application will be reviewed by the current members of the IMS Board and members of the Award Subcommittee. Applicants must be a member of IMS in good standing at the time the application is submitted and through the duration of the award funding period.

The members of the IMS Board and the Awards Subcommittee will be the electors by voting for only one applicant.

Conflict of interest: Any member, either IMS or Award Subcommittee, who are directly linked to the applicant will have access to the applications but will not be involved in the voting process.

Ken Anderson Young Investigator Award for basic and transitional research

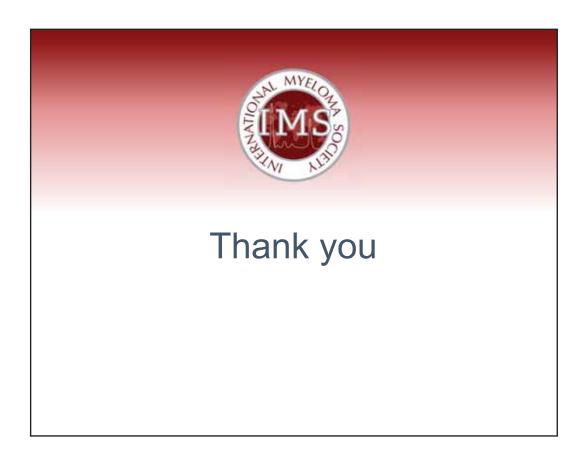
Application Evaluation

Each eligible application will be reviewed by the current members of the IMS Board and members of the Award Subcommittee Applicants must be a member of MS in good standing at the time the application is submitted and through the duration of the award funding period.

The members of the IMS Board and the Awards Subcommittee will be the electors by voting for only one applicant.

Conflict of interest: Any member, either IMS or Award Subcommittee, who are directly lineed to the applicant will have access to the applications but will not be involved in the voting process.

Clinical Lymphoma, Myeloma, & Leukemia


Senior Editor: Sundar Jagannath, MD Editor, Myeloma: Sagar Lonial, MD

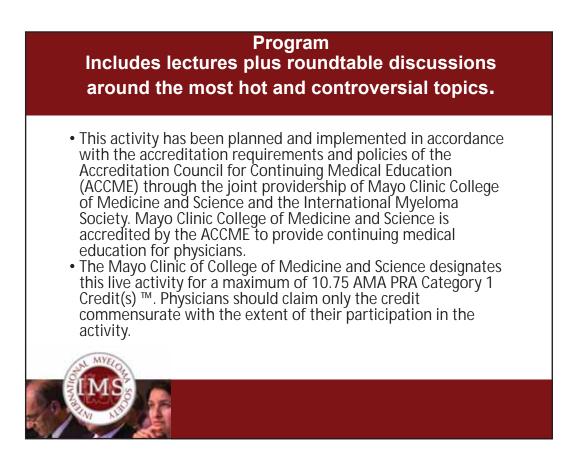
- Society: International Myeloma Society, Society of Hematologic Oncology
- Impact Factor: 2.02 (Increased from 1.6)
- Print Circulation: 10,000+
- Rejection Rate: 70%
- Article downloads per month: 5,222
- Will consider for publication: original research (including clinical trials), meta-analyses, reviews, current trial reports, case studies
- Open access publication opportunities: \$1700.00
 sponsorship fee
- Article submission: <u>http://ees.elsevier.com/clml</u>

ISSN: 2152-2650 Current Vol: 15 Frequency: Monthly

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Future Dates and Locations

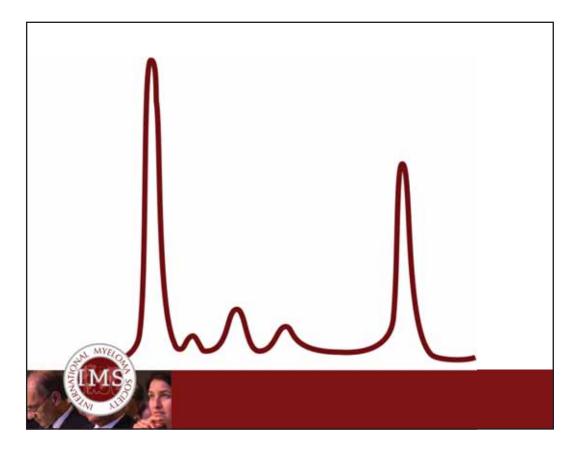
Educational Workshop

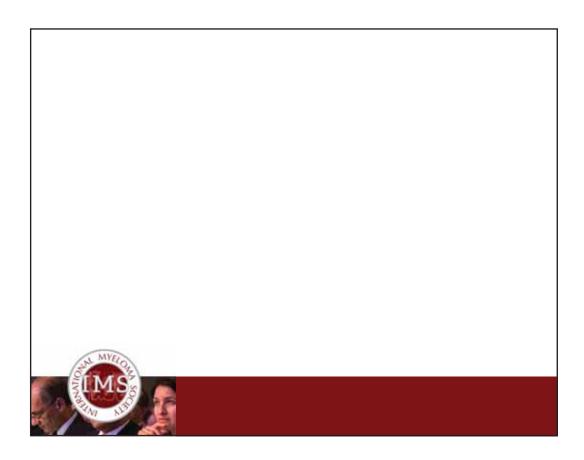

R fwrehu#5:05;/#534: Qdwlrqdd#K dueru/#P du|odqg/#K VD +J d|orug#Qdwlrqdd#K rwho,

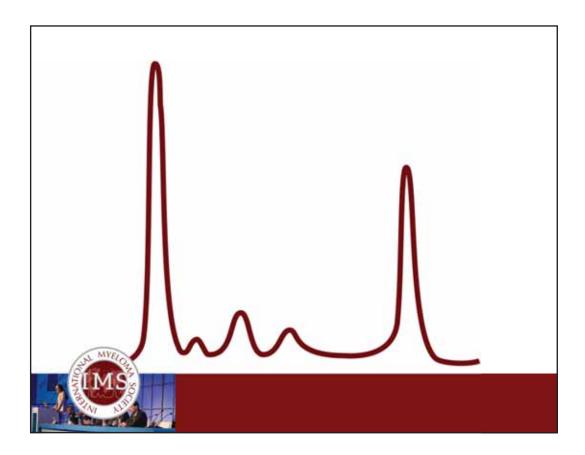
Co-Chairs:

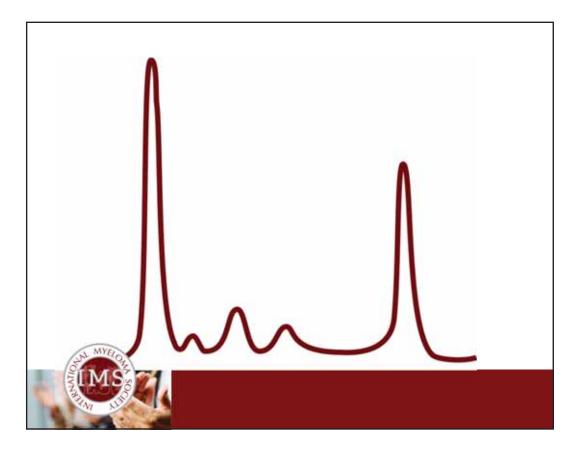
Goal for the Educational Symposia Series

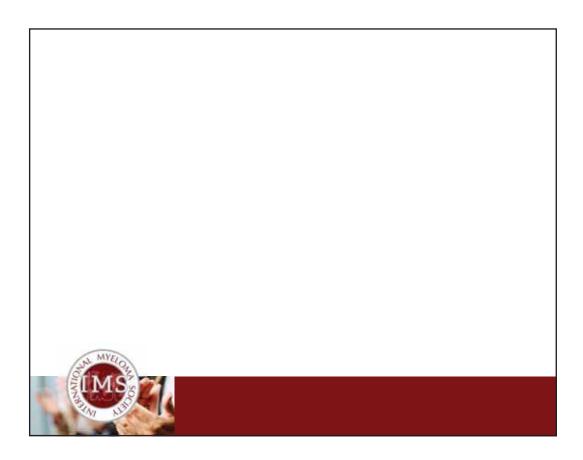
- Share with local hematologists the state of the art on diagnosis, monitoring and treatment of Plasma Cell malignancies paying special attention to the current practice in the local countries and the opportunities for improvement.
- Our purpose is also to offer the opportunity for social interaction in order to establish potential collaborations with the invited speakers including the possibility of visiting their institutions or establishing fellowship programs.

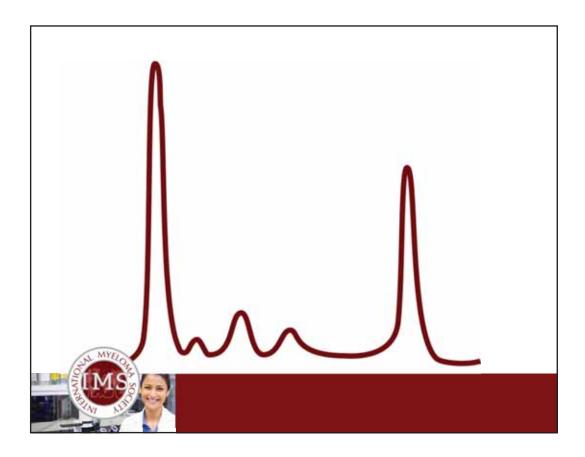






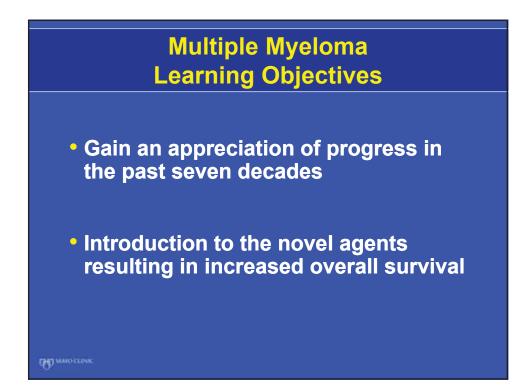


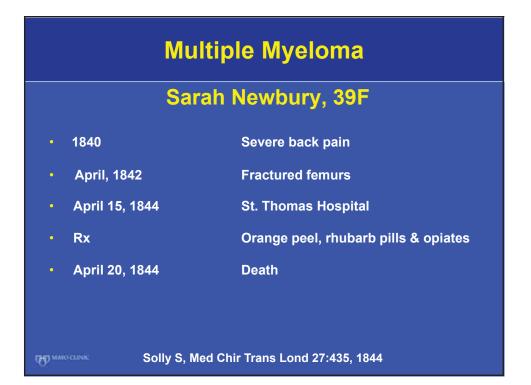


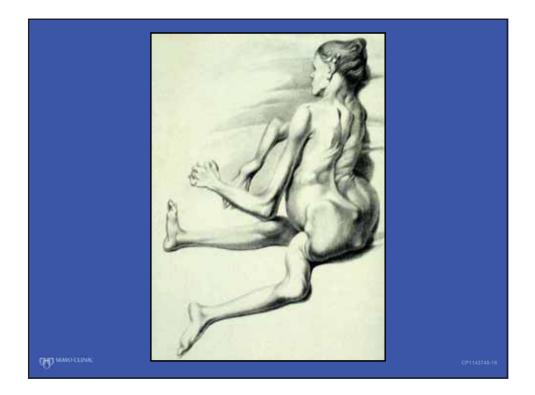


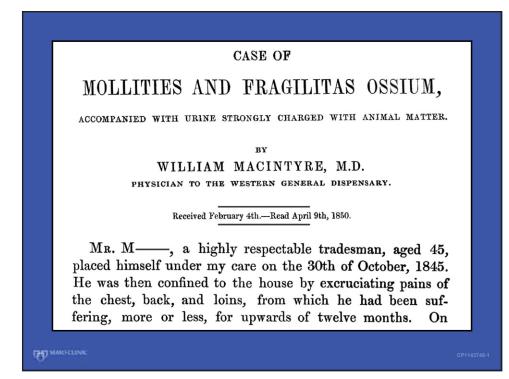
Multiple Myeloma: The Past, Present & Future

IMS Education Workshop Washington, DC October 27, 2017 Robert A. Kyle, MD Mayo Clinic, Rochester, MN

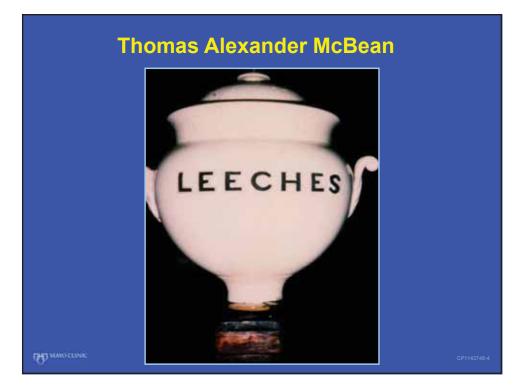

Scottsdale, Arizona

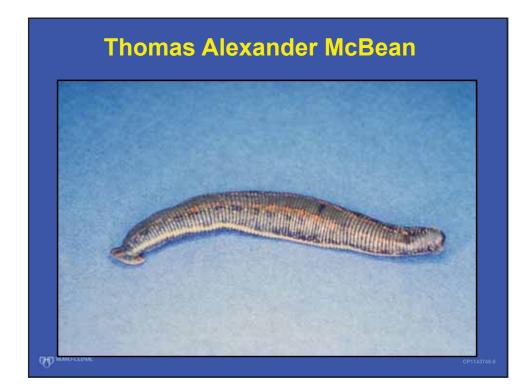

Rochester, Minnesota

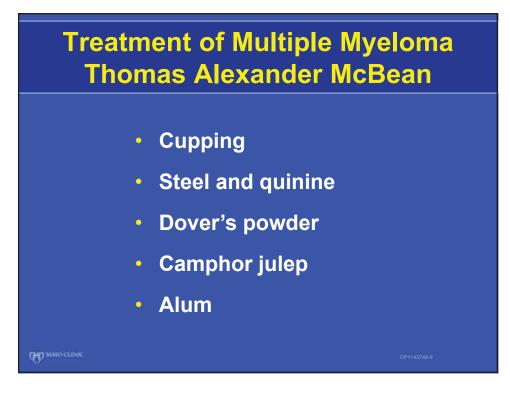

Jacksonville, Florida


Disclosures for Robert A. Kyle

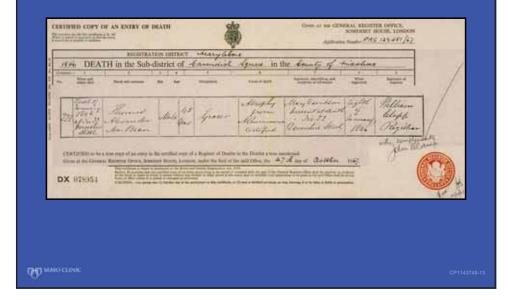
Celgene	Disease Monitoring Committees		
Bristol-Myers Squibb	Independent Monitoring Committee		
Pharmacyclics	Data Safety Monitoring Board		
My role for the Monitoring Committees is monitoring toxicity and efficacy of the tested drug. I do not participate in entering any patients on the above-listed activities.			
All monitoring committees are compensated at an hourly rate.			
I am not a member of a Speaker's Bureau.			
В иностанк			





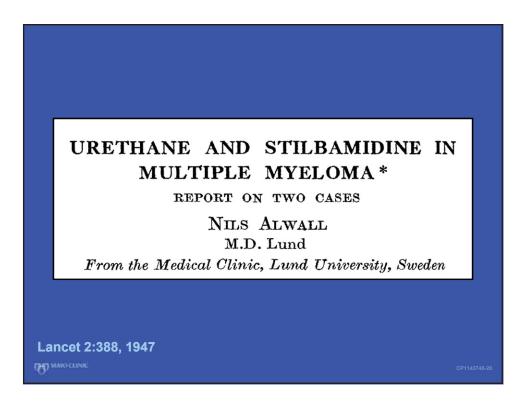

Treatment of Multiple Myeloma Thomas Alexander McBean

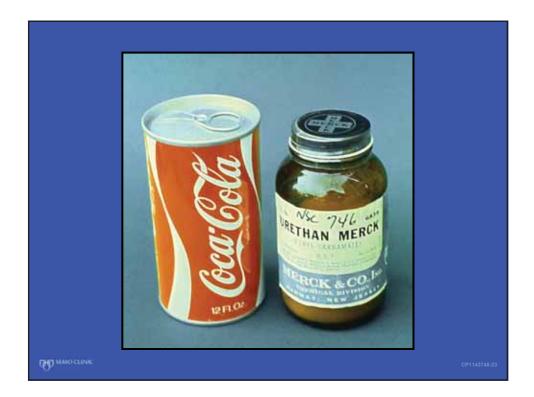
- Strengthening plaster to chest
- Removal of a pound of blood
- Maintenance Therapy

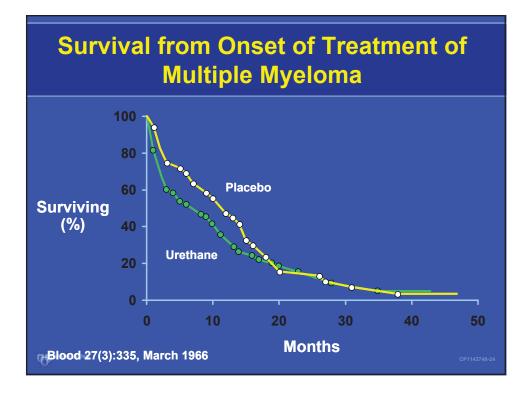


Thomas Alexander McBean

	1130 DISEASES OF THE BLOOD	
MANYO CLUVIC	<page-header><page-header><page-header><text><text><text><text><text><text></text></text></text></text></text></text></page-header></page-header></page-header>	


Multiple Myeloma


Prognosis and Treatment. The disease is uniformly fatal after an average duration of life of between two and three years. Occasionally the course is prolonged with remissions and exacerbations. Roentgen ray exposures should be employed in all cases, as it frequently gives worth-while symptomatic relief and may prolong life in some instances. This, with blood transfusions, is the only known therapeutic agent of recognized value. Otherwise the treatment is symptomatic.


"Cyrus C. Sturgis"

PH965519_1.Dig

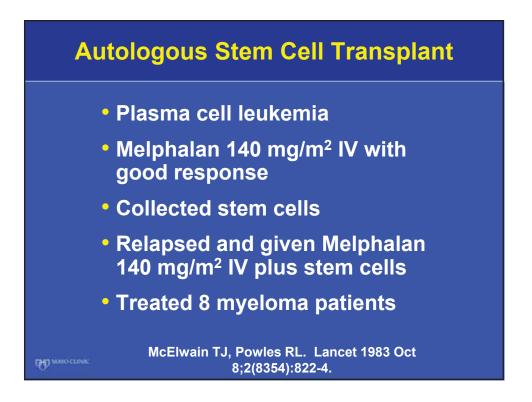
Cecil Textbook of Medicine 7th Ed., 1948

Treatment of Multiple Myeloma

L-sarcolysin (L-phenylalanine mustard) (Melphalan) (Alkeran)

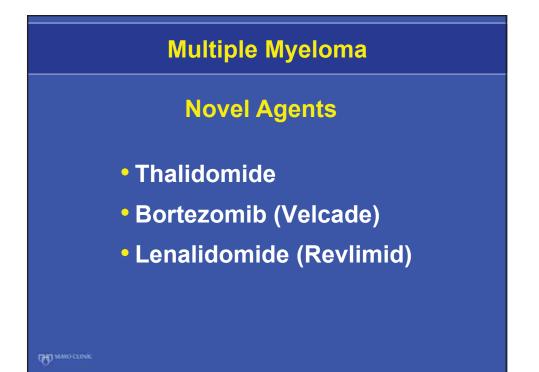
Blokhin et al, 1958 Bergsagel et al, 1962

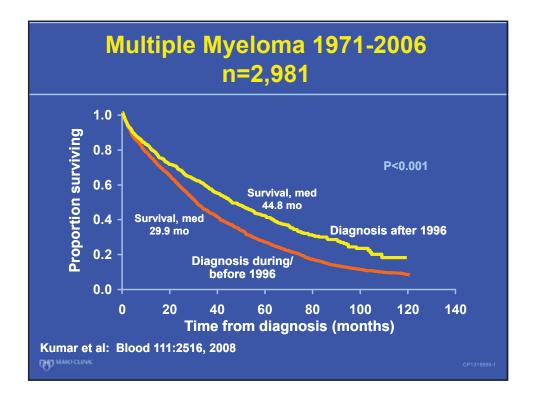
TO MANO CUNIC

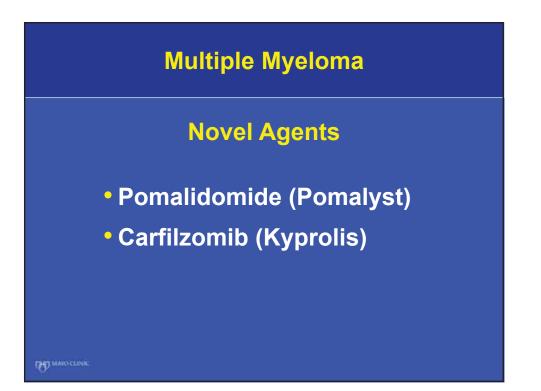

MULTIPLE MYELOMA AND ACUTE MYELOMONOCYTIC LEUKEMIA

Report of Four Cases Possibly Related to Melphalan

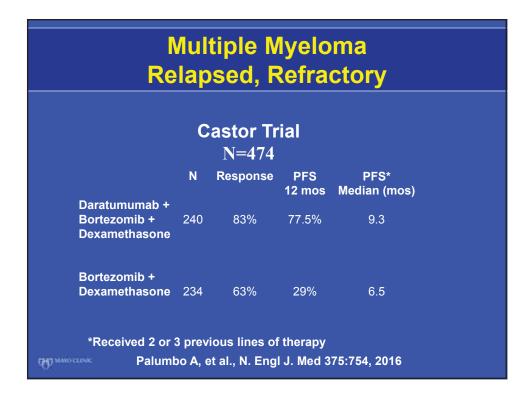
ROBERT A. KYLE, M.D., ROBERT V. PIERRE, M.D., AND EDWIN D. BAYRD, M.D.

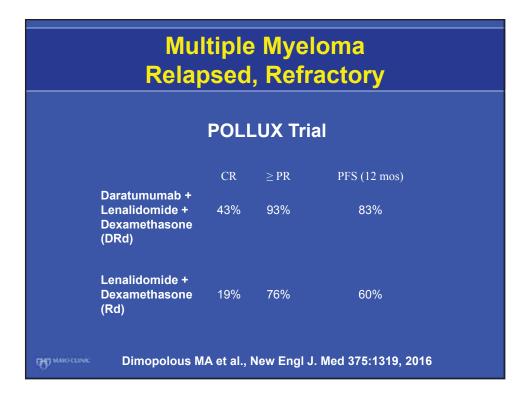

NEJM 283:1121, 1970

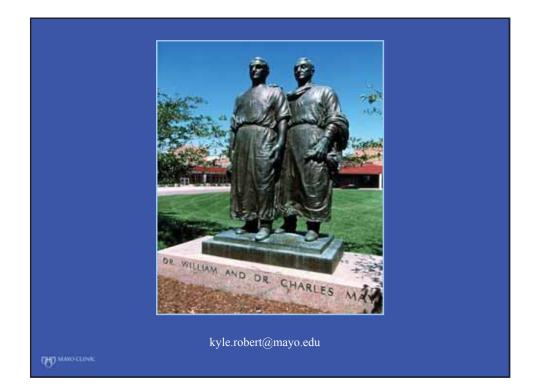

Single (M/P)	e Myeloma vs Combination erapy (CCT)
n=4,930) (20 trials)
Therapy	Response (%)
M/P	53
ССТ	60
P<0.00001	
No difference in s	urvival
No subsets with b	penefit
J. Clin Oncol. 16:	3823, 1998.



Multiple Myeloma Autologous Stem Cell Transplantation N=700


		Consolidation	PFS Mos	CR %	MRD Absent %	ОЅ 5 уі %
RVD x 3	Autologous transplant + lenalidomide RVD x 2 1 year		50	59	79	81
	RVD x 5	lenalidomide 1 year	36	48	65	82
o cunic	Attal M et al., I	N Engl J Med 3	376:14	2017		



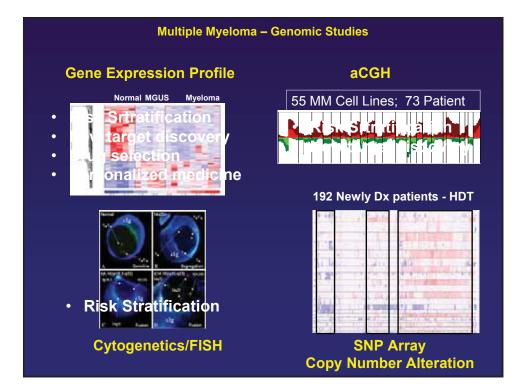


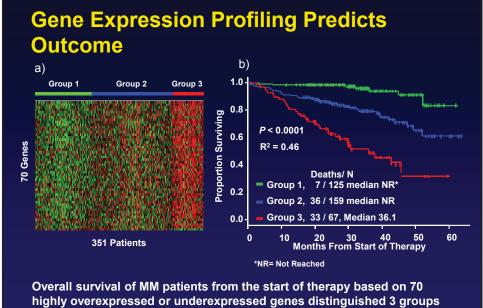
		ultiple Mye apsed, Ref			
	Cas	tor Trial – Sid	e Effe	cts	
Daratumumab +	Grade 3/4	Thrombocytopenia	Anemia	Neutropenia	Infusion reaction
Bortezomib + Dexamethasone	76%	45%	14%	13%	45%
Bortezomib + Dexamethasone	62%	44%	31%	9%	
CO MANO CLONE	Palumbo	A, et al., N. Engl J. M	ed 375:75	54, 2016	

		ultiple Mye apsed, Ref			
		POLLUX Tr	ial		
	Gr 3-4	Thrombocytopenia	Anemia	Neutropenia	Infusion
Daratumumab + Lenalidomide + Dexamethasone (DRd)	43%	13%	12%	52%	48%
Lenalidomide + Dexamethasone (Rd)	19%	14%	20%	37%	
ер имо сама Di	mopolous	s MA et al., New Engl	J. Med 3	75:1319, 2016	

	Multij Relaps					
	Trial	Regim	ən	CR (%)	PFS (Median in months)	HR (95% Cl) for progression free survival; P value
	Lei	nalidom	ide	Based	Regimen	IS
	ASPIRE	Rd	14		17.6	
	Carfilzomib (Selective proteasome inhibitor)	KRd	32		26.3	0.69 (0.57-0.83) P=0.0001
	POLLUX	Rd	19		18.4	
	Daratumumab (monoclonal antibody targeting CD 38)	DRd	43		NR	0.37 (0.27-0.52) P<0.001
	B	ortezom	ib-E	Based	Regimens	<u> </u>
	CASTOR	Vd	19		7.2	
	Daratumumab (monoclonal antibody targeting CD 38)	DVd	9		NR	0.39 (0.28-0.53) P<0.001
Ванно стояс	Rajkumar SV, K	yle RA,	N	Engl.	J Med 37	75:1390, 2016

Genomics to predict disease outcomes: Are we there yet?

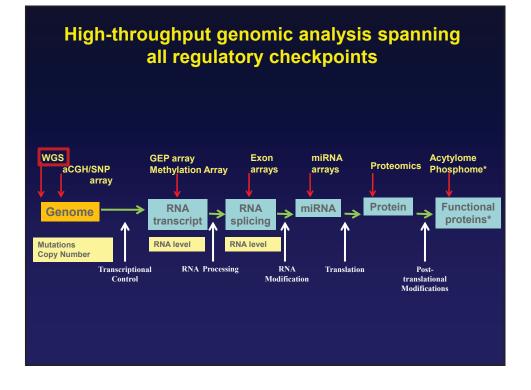

Hervé AVET-LOISEAU, MD, PhD IUC-Oncopole Toulouse, France


Why Evaluate Genetics

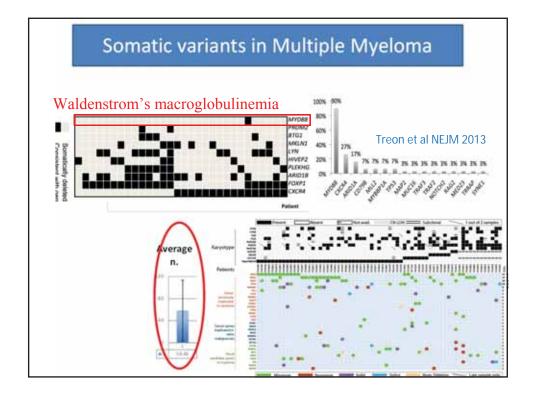
- To evaluate risk prognosis
- To select therapy
 - Induction
 - Consolidation/maintenance
 - Therapy for relapse
- To consider targeted agents
- Identify new targets and agents
- Understand biology -prevention

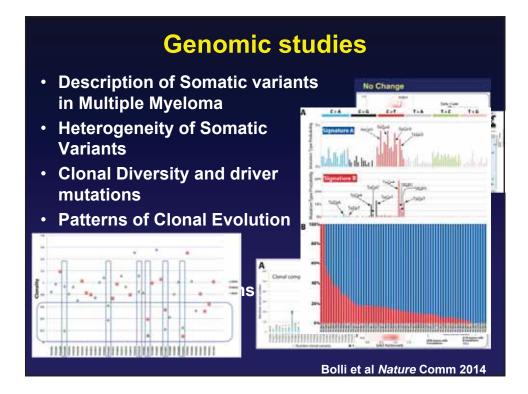
What Are the Methods Used to Evaluate Genetics

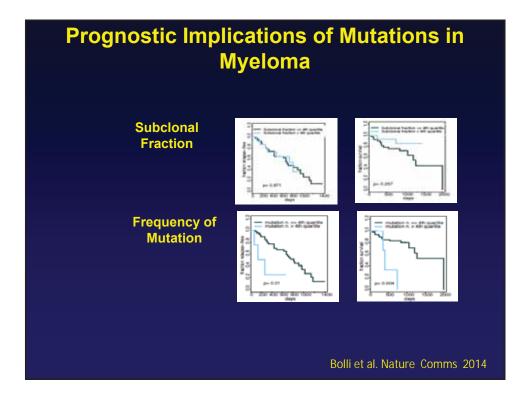
- FISH and Cytogenetics
- Copy number Changes
 - SNP array
 - CGH array
- Expression Profile
 - array-based
 - RNA-sequencing



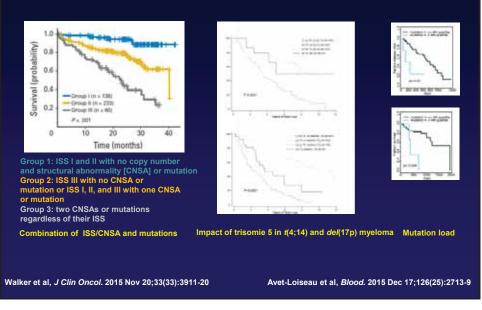
of patients: good, intermediate or poor prognosis


Shaughnessy JD et al. Blood. 2007;109:2276-2284.


	Signature	No of genes	No of Genes common with 70 Gene Signature	No of Genes common with 92 Gene Signature
1	UAMS	70 genes		2 genes (BIRC5, LTBP1)
2	HOVON-65/GMMG-HD4 (EMC92)	92 genes	2 genes (BIRC5, LTBP1)	
3	IFM	15 genes	None	1 gene (FAM49A)
4	Chromosome instability signature	214 genes	7 genes	15 genes
5	Centrosome index signature (CNTI)	4 genes	None	None
6	Cell death signature implicated by homozygous deletion (HZDCD)	6 genes	None	None
7	7-gene prognostic signature HMCL MM cell lines study	7 genes 6 genes	None None	None None
8	Proliferation signature	50 genes	3 genes (BIRC5, ASPM, CKS1B)	6 genes (ESPL1, MCM6, NCAPG, SPAG5, ZWINT, BIRC5)

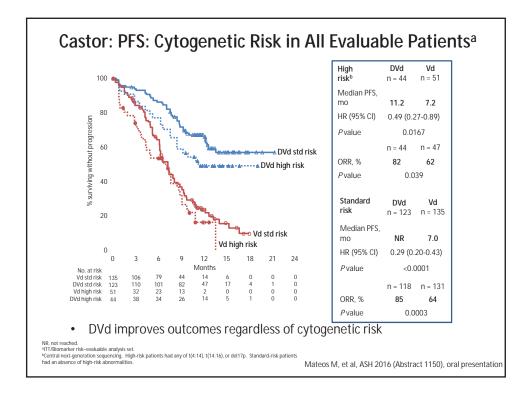


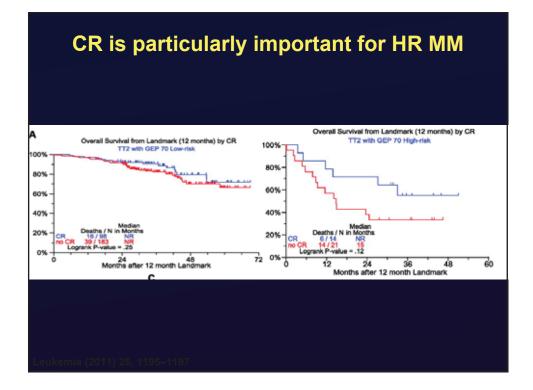
What Are the Methods Used to Evaluate Genetics


- FISH and Cytogenetics
- Copy number Changes
 - SNP array
 - CGH array
- Expression Profile
 - array-based
 - RNA-sequencing
- DNA Sequencing
 - Whole exome, whole genome
 - Targeted sequencing

Next generation sequencing improve risk stratification

Why Evalute Genetics

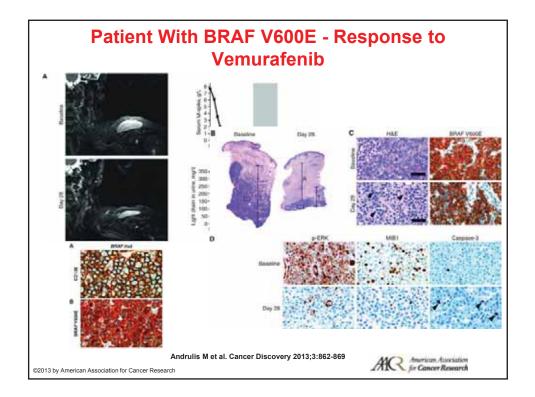

- To evaluate risk prognosis
- To select therapy
 - Induction
 - Consolidation/maintenance
 - Therapy for relapse
- To consider targeted agents
- Identify new targets and agents
- Understand biology -prevention


Triplets with an Rd backbone will become standard of Care for elderly patients with high risk disease ?

1.1 months 23.1 vs 16.7 months (HR=NA)
4.9 months 15.8 vs 5.5 months) (HR=0.52)
7 months 18.5 vs 12 months 6) (HR=0.645)
)

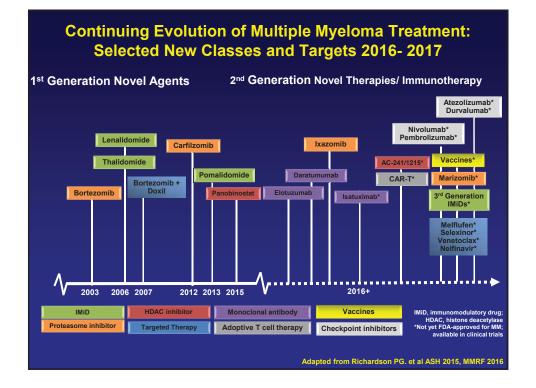
- 3 Dimopoulos MA et al, oral presentation ASH 2015, Abstract 28
- 4 Moreau P et al, oral presentation ASH 2015, Abstract 727

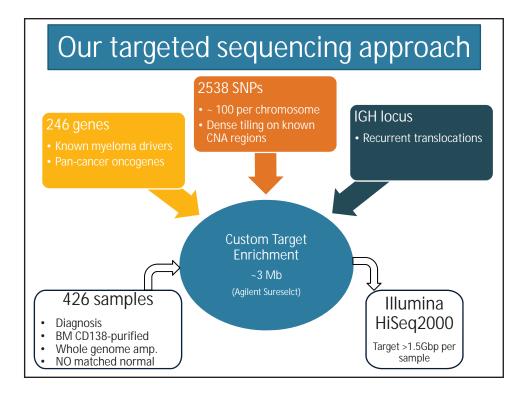
5 Usmani S et al, ASH 2016

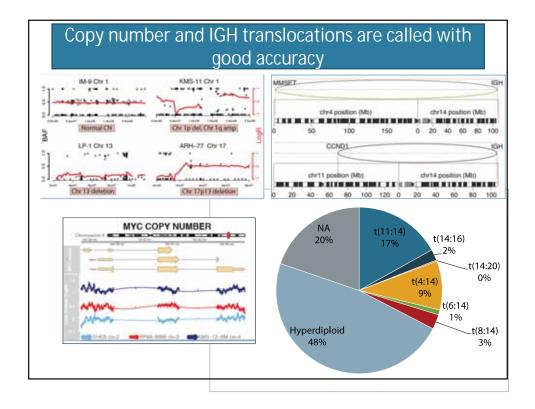


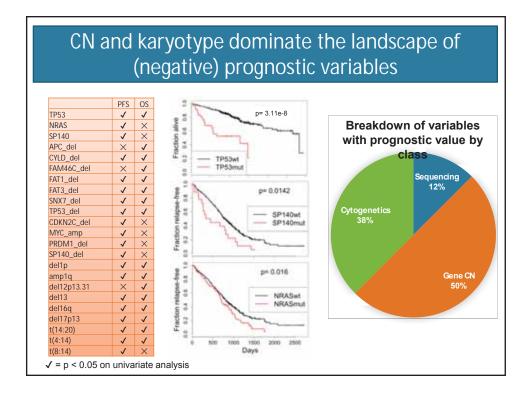
8

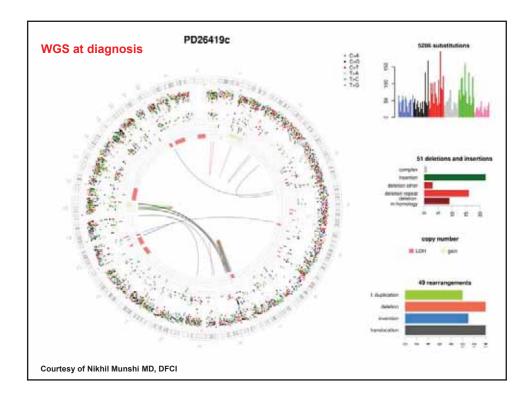
Why Evalute Genetics

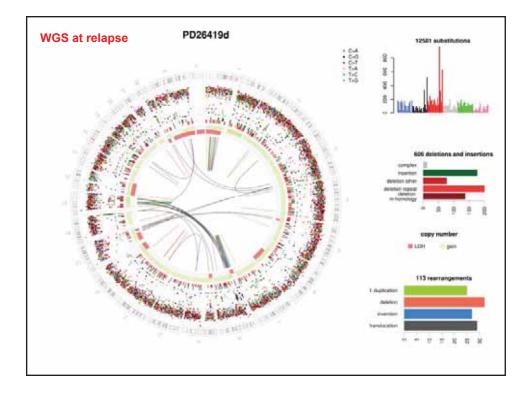

- To evaluate risk prognosis
- To select therapy
 - Induction
 - Consolidation/maintenance
 - Therapy for relapse
- To consider targeted agents
- Identify new targets and agents
- Understand biology -prevention

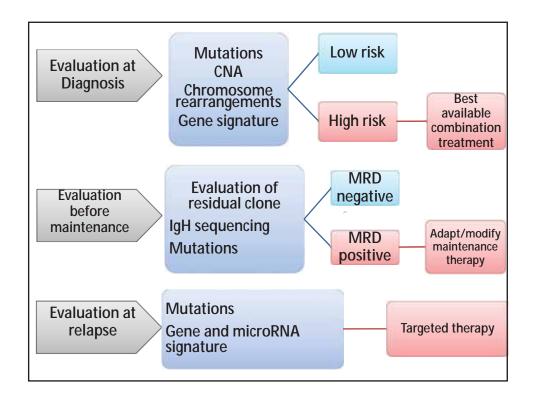

Heterog	eneity	of Som	atic Va	riants
Gene	Bolli et al. (n=84 pts)	Lohr et al. (n=203 pts)	Walker et al (n=463)	
NRAS	25%	20%	22%	
KRAS	25%	23%	20	
TP53	15%	8%	3.5%	
DIS3*	1.5 %	11%	10%	
FAM46C	12%	11%	5.4%	
BRAF	15% V600E in 3/10	6%	8%	
SF3B1	3%	1.5%	<2%	
CYLD	3%	2.5 %	3%	
TRAF3	3%	5.5%	4.1%	
ROBO1	7%	2%	<2%	
EGR1	6%	3.5%	3.6%	
SP140	7%	4.4%	<2%	
LTB	4.5%	1%	3%	
RASA2	3%	3%	<2%	
FAT3	7%	4.4%	3.9%	
CCND1	3%	3%	3.5%%	Bolli et al Nat Comm 2

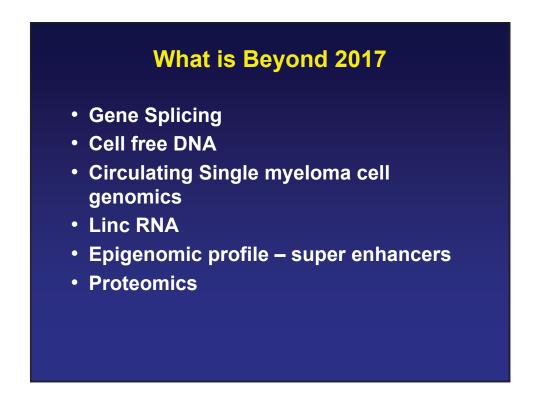


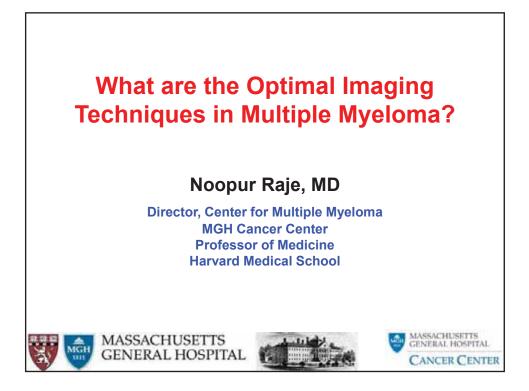

Why Evalute Genetics

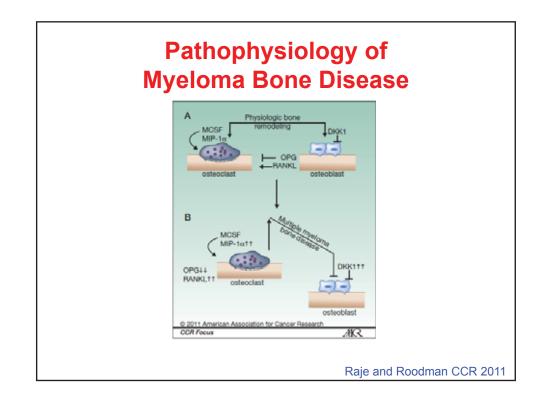

- To evaluate risk prognosis
- To select therapy
 - Induction
 - Consolidation/maintenance
 - Therapy for relapse
- To consider targeted agents
- Identify new targets and agents
- Understand biology -prevention

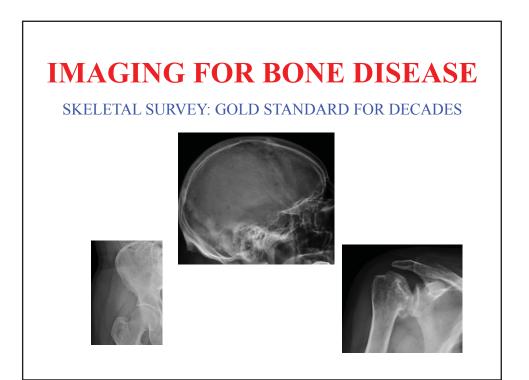


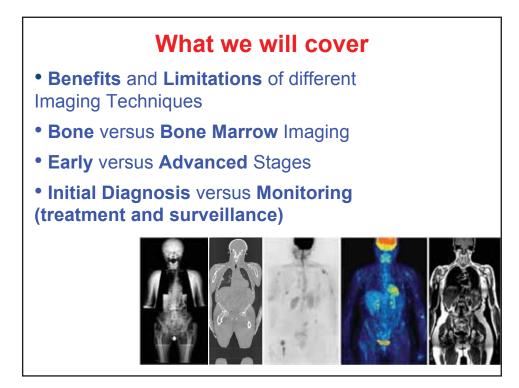


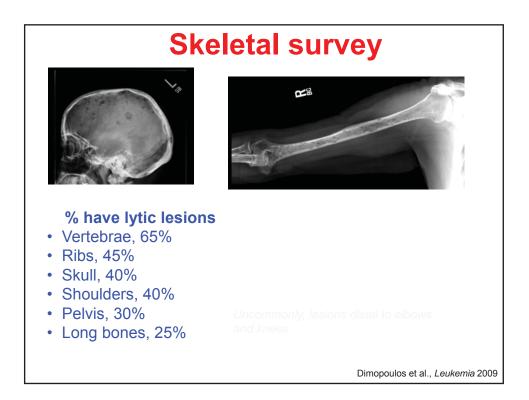


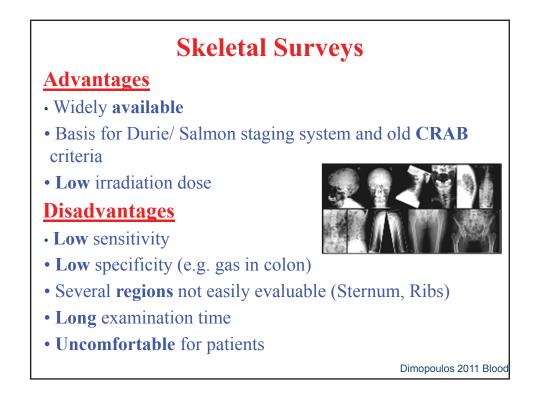











2

Imaging for Bone Disease

- What is New?
- What is Recommended?

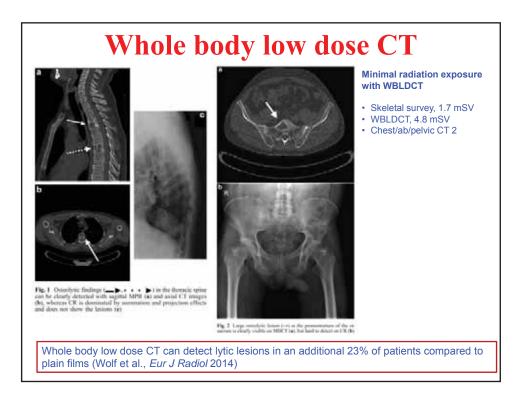
Limitations of conventional radiographs

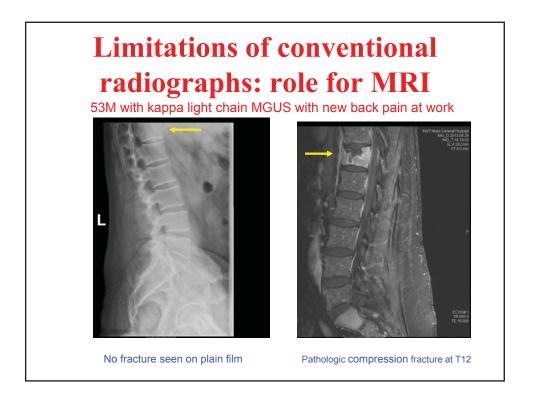
Lytic lesions seen on plain films only after 30-50% of bone mass destroyed

Large lytic lesion not readily appreciated on skeletal survey

Computed Tomography (CT)

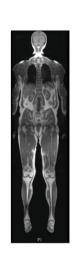
Advantages


- Superior to x-ray for detection of bone defects1
- whole body low-dose protocol for patients available
- evaluation of stability because of **3D information**
- follow-up evaluation feasible2
- patient convenience
- New standard imaging technique1


Disadvantages

- **higher** radiation dose even in "low-dose"-technique (4.1 mSv => approx. 2x skeletal survey)
- lower sensitivity than MRI for PC infiltration

¹Hillengass 2017 BCJ ²Horger 2007 Cancer

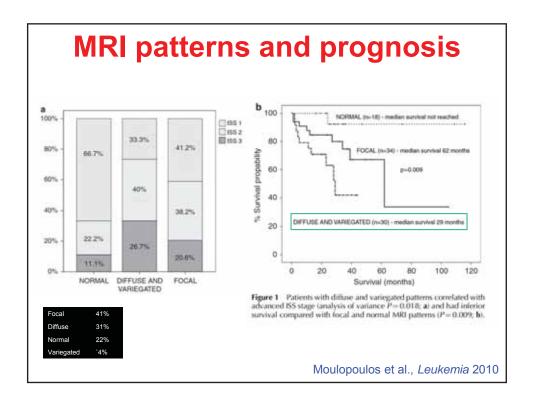

Magnetic Resonance Imaging (MRI)

Advantages

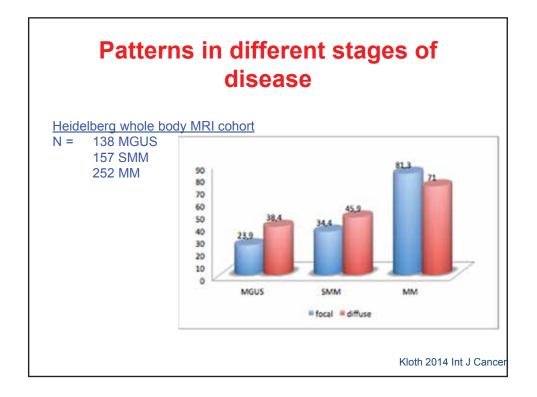
- Shows infiltration before bone has been destroyed
- · Highest resolution for soft tissue and bone marrow
- Differentiation between benign and malignant fractures¹
- Follow-up relevant²
- Basis of the new definition of MM³

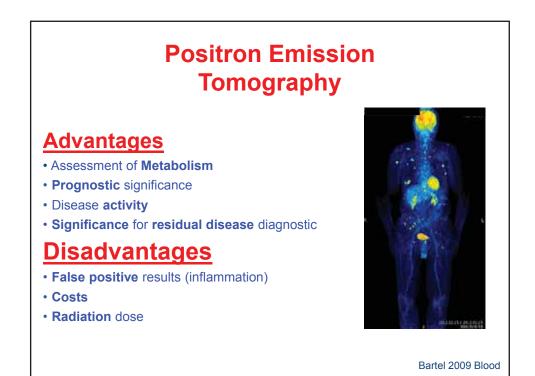
<u>Disadvantages</u>

- Inferior to CT for assessment of bone disease/ stability
- Not applicable in patients with some metallic implants/ claustrophobia
- Inferior to PET-CT for residual disease diagnostic

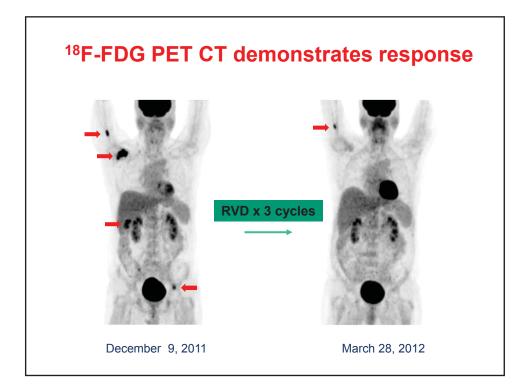

¹Baur 1998 Radiology

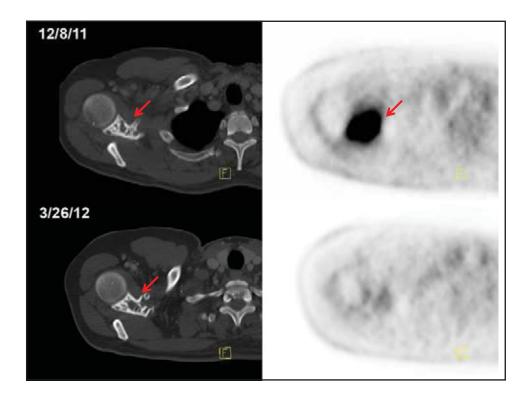
⁴Moreau 2017 JCO


²Hillengass 2012 Haematologica ³Rajkumar 2014 Lancet Oncol


<section-header>ARI patterns: normal, variegated, diffuse, focalImage: strain diffuseImage: strain

In **smoldering multiple myeloma** (according to older criteria), more than 1 focal lesion detected by MRI associated with 70% risk of progression in 2 years (Hillengass et al, *J Clin Oncol* 2010) Terpos et al., ASCO 2016 Educational Book




3	pinal v	ersu	is Who	ole Boo	dy MR	
N = 100						
<u>Results</u>						
• whole	body-MRI si	gnificant	ly better that	n spinal MR	1	
axial			extra-ax	ial		1
intra-osseous	exceeding cortical bone	mixed	intra-osseous	exceeding cortical bone	mixed	
24	2	14	24	0	15	
exclusiv	ely axial les	ions	exclusive	ely extra-ax	tial	1
UNCICICION V	ory axial loo		lesions	Jy Oxela ax		
			10			-
11						

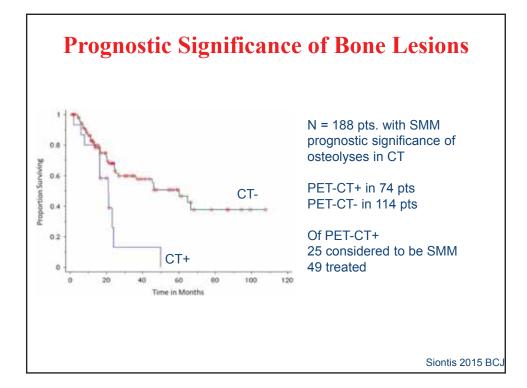
9

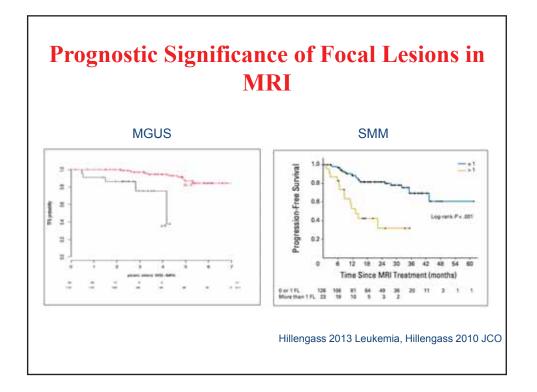
Role of ¹⁸F-FDG PET CT

Role of ¹⁴F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the International Myeloma

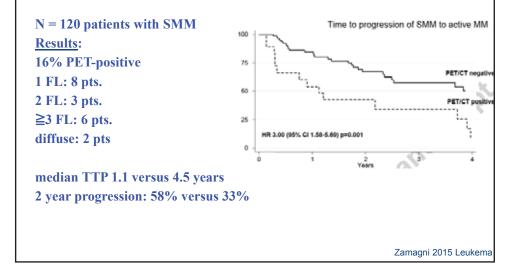
Working Group

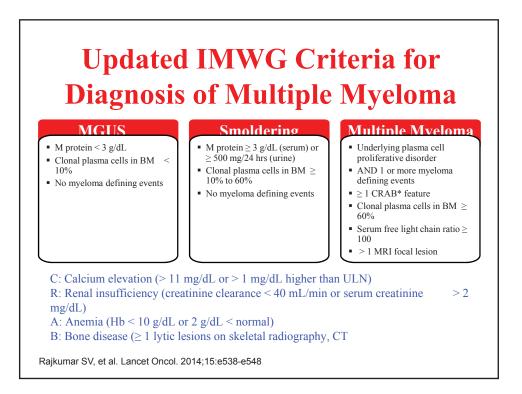
Beschreisen, Leungenn Hugen, Leunen Henryn, Franzyn Konsenn, Franz Charlandon, Jong Zhangyan, Jan Hannaya, Alema Carlon, San Mayari, Bay F. Karan, Park C. Kharahan, Jong P. Martinez, Kornarda Hall, Carlos A. Barton, K. B

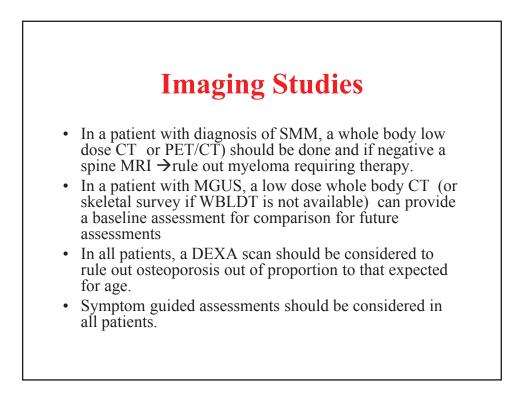

The Interaction Weekers Weekers Comp. Comp. Interaction of a gravity communitation to the splite of an efdimensional splitered of PERFECTS in a splitered with multiple splitered on effect of the splitered of



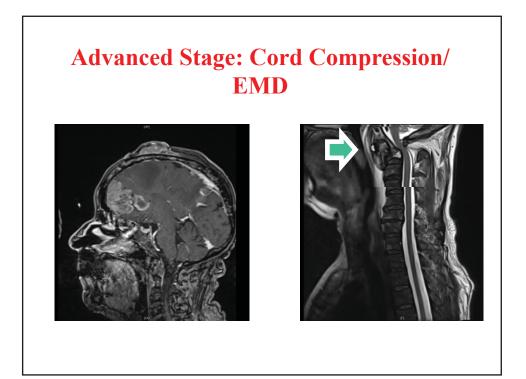
Base denses per la bilanda de resultar sequitaras, a resolutarás de particular de la casa de la dense, como como el normalia and anazañas: "Enclosed insues manes como el normalia and anazañas" Enclosed insues anazañas de la desarra como de la casa de la casa de la casa de la desarra como de la casa de la of d'automate supermode soit de la construction de

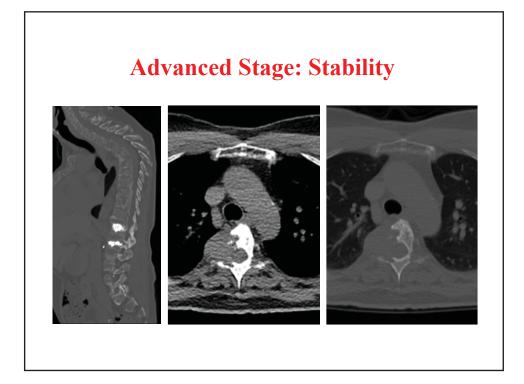

Despite the order of the second seco

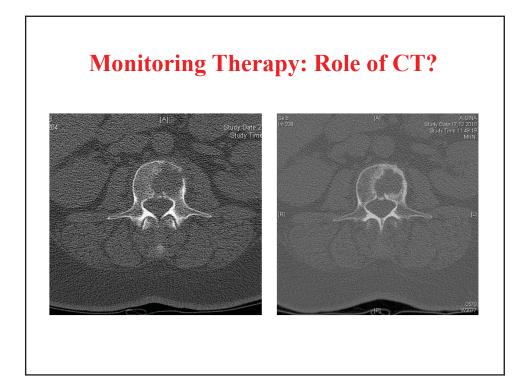

- Solitary plasmacytoma v. multiple myeloma
- Detecting disease outside of field of view of MRI
- Detecting extramedullary disease
- In IFM 2009, response on PET CT more prognostic than MRI (Moreau et al., ASH 2015)

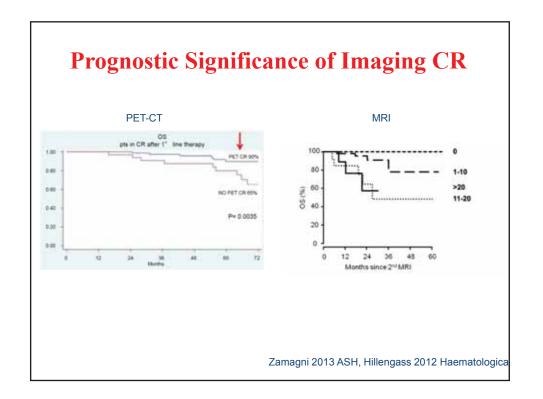


Prognostic Significance of Focal Lesions in PET-CT in SMM

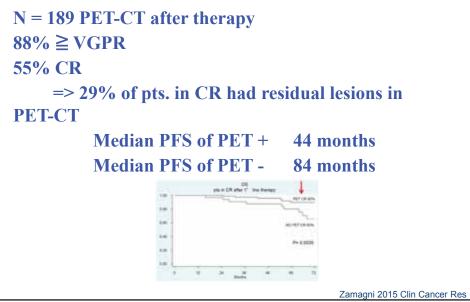


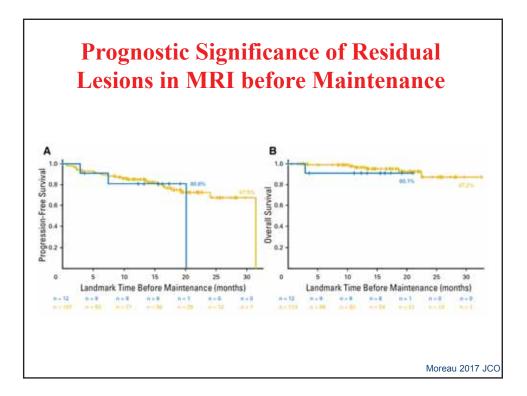


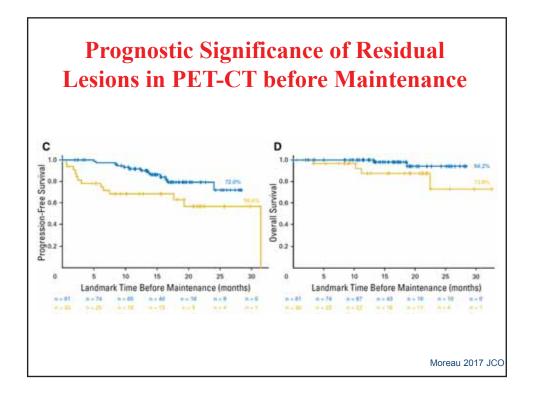


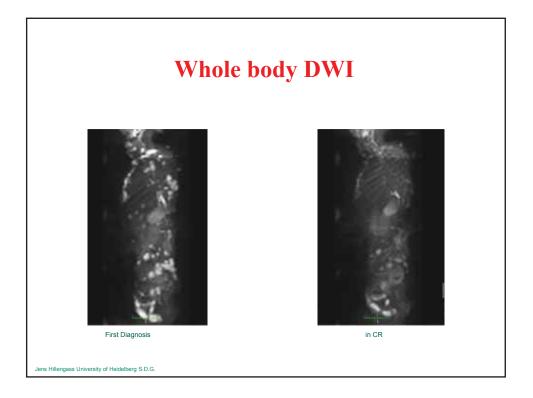

Follow up testing

- In patients with 1 focal lesion on MRI or equivocal lesions, a repeat MRI should be considered in 6 months
- In patients with SMM, a whole body low dose CT can be considered, if cost constraints are not present, annually at least for the first 5 years from diagnosis

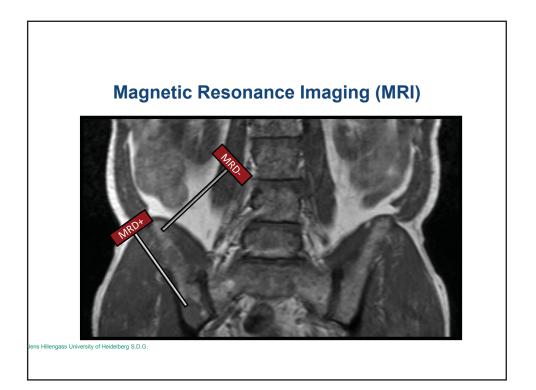


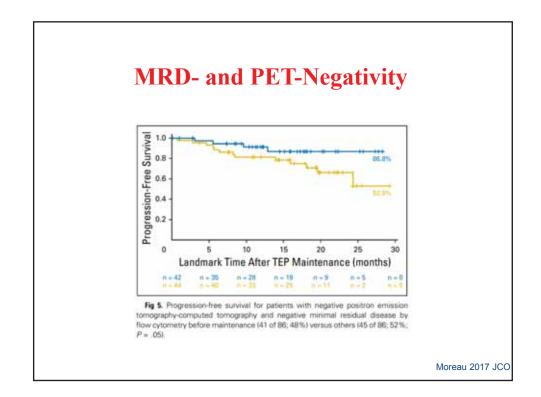

Prognostic significance of residual lesions in PET-CT



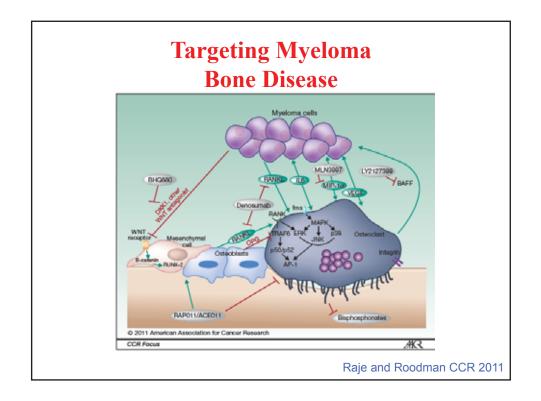

Prognostic significance of residual lesions in PET-CT

<u>At diagnosis</u>: MRI positive in 127/134 (95%), PET-CT positive in 122/134 (91%) (McNemar test = 0.94, p-value = 0.33).


Moreau 2017 JCO



PET-	CT ve	rsus	Functi	onal MF	SI
I = 17 patients	with 20 pa	irs of scan	S		
			body diffusion-weigh		
	WB-DWII are high ill body regions	er than for FDG P	ET-CT for the whole	body and in	
-		Score m	ean (±s.d.)	P-value*	
		FDG PET-CT	WB-DWI		
-	Whole body	8.45 (+8.70)	17.65 (+12.24)	0.002	
	Region			_	
	C spine	0.47 (±1.17)	1.68 (±1.92)	0.016	
	T spine L spine	1.20 (±1.64) 1.00 (±1.62)	2.60 (±2.04) 2.50 (±2.04)	0.011	
	Pelvis	2.40 (+2.54)	3.30 (+1.95)	NS. 0.13	
	Long bones	1.85 (±2.35)	2.80 (±2.71)	NS, 0.19	
	Skull	0.21 (±0.63)	1.95 (±1.96)	0.004	
	Ribs/other	1.35 (±1.90)	3.00 (±1.97)	0.006	
1		uted tomography;	odeoxyglucose positi NS, not significan		

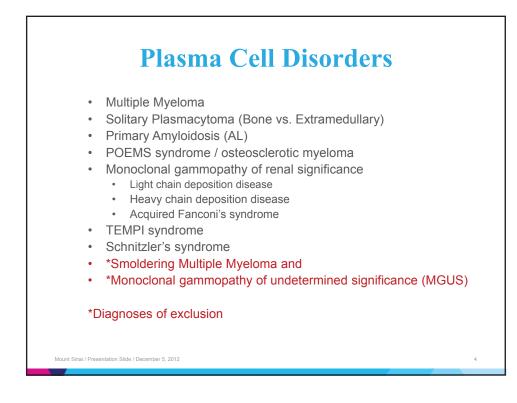


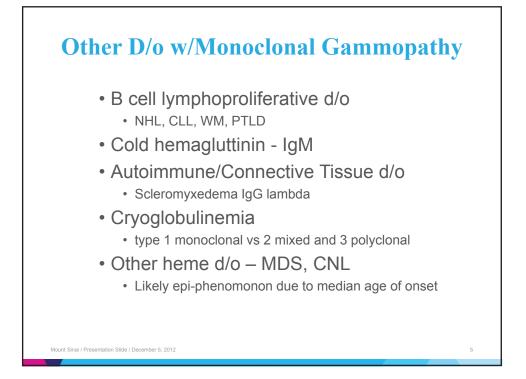
Summary						
first diagnosis	follow up					
Osteolyse ICT (MRI)	Osteolyse CT (MRI)					
MRI (PET-CT)	MRI (PET-CT)					
(PET)-CT (MRI)	(PET)-CT(MRI)					
MRI ((PET)-CT)	MRI ((PET)-CT)					
	first diagnosis Osteolyse CT (MRI) MRI (PET-CT) (PET)-CT (MRI)					

Key points for imaging

- Whole-body LDCT is superior to conventional radiography for the detection of osteolytic lesions, and it is suggested to replace it in the work-up of patients with myeloma.
- MRI is the best imaging method for the depiction of marrow infiltration by myeloma cells.
- Whole-body MRI (or at least MRI of the spine and pelvis if whole-body MRI is not available) should be performed for all patients with smoldering multiple myeloma with no lytic lesions to look for occult disease, which may justify treatment.
- PET/CT allows better definition of complete response and minimal residual disease.
- PET/CT has an independent prognostic value both at diagnosis and after treatment.

Terpos et al, ASCO Educational Book 2016

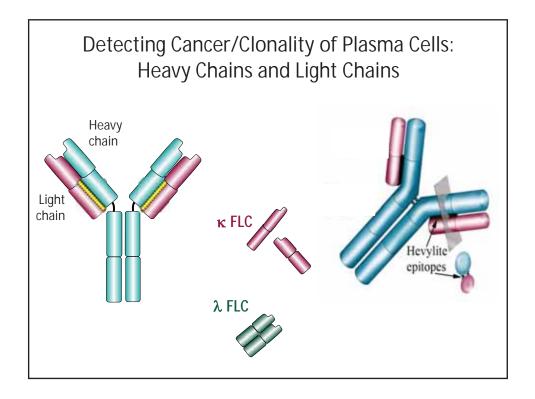

Future Directions and Issues

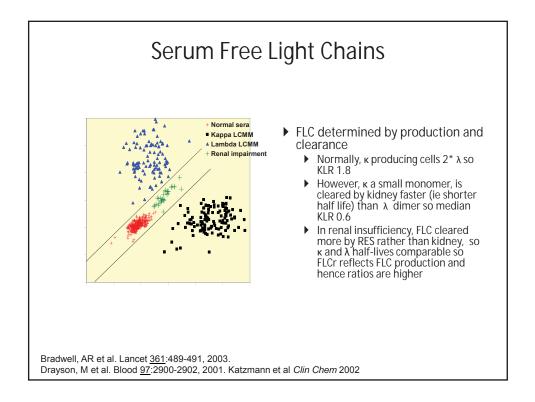

- Better imaging to determine bone anabolic effects
- Clear guidance on monitoring
- Clinical trial still rely on skeletal surveys:
- Therefore difficult to CHANGE standard for monitoring

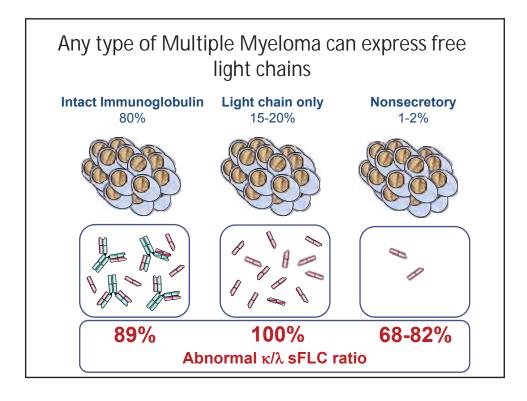
Nature of Relevant Financial Relationship	Commercial Interest
Grant or research support	Amgen, Array Biopharma, Celgene, Millenium/Takeda, Novartis Pharmaceuticals, Janssen, Pharmacyclics
Paid consultant	Celgene, Millenium/Takeda, Novartis Pharmaceuticals, Janssen

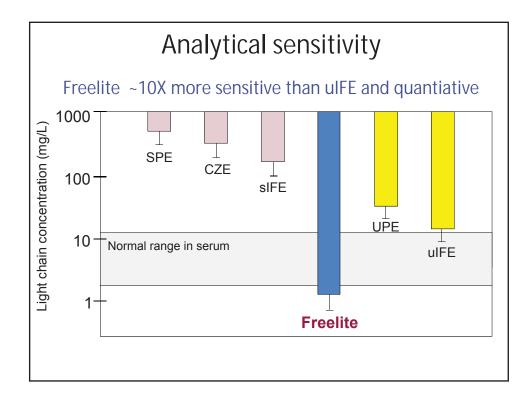
A	mylo	oidosis -	classification
Class		Precursor protein	Clinical association
primary	AL	Ig light chain	Plasma cell dyscrasias
	AH	Ig heavy chain	
secondary	AA	Amyloid A protein	Secondary to infection, RCCa, FMF
	ATTR	Transthyretin	Senile systemic amyloidosis
	AFib	Fibrinogen A α	Hereditary renal amyloid
	A Apo I	Apolipoprotein A	Cardiomyopathy, neuropathy

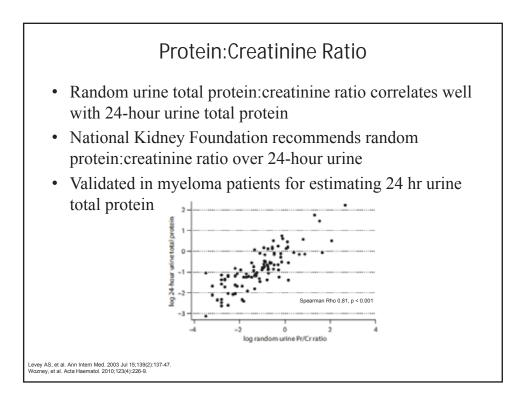
Paraffin embedded tissue (NOT FIXED) to Mayo Labs for laser microdissection + tandem mass spectrometry based proteomic analysis of amyloid subtype

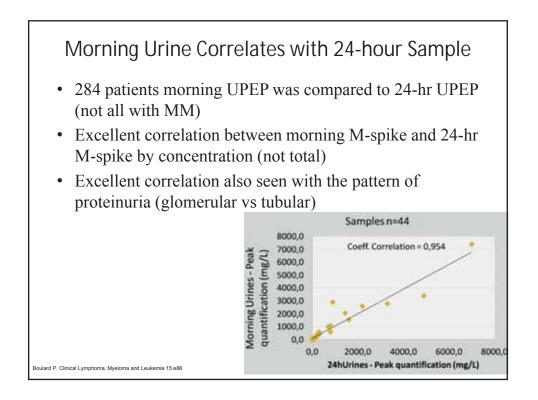

β₂-microglobulin Dialysis amyloid

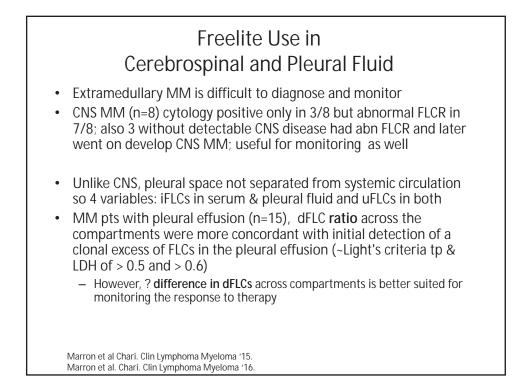

Αβ**2** Μ


Paraproteinemias and Neuropathy

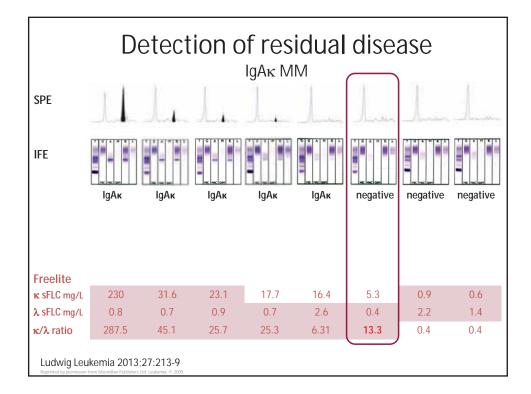

DISORDER	NEUROPATHY	SYSTEMIC FEATURES	PARAPROTEIN	ELECTROMYO- GRAPHIC CHANGES
Multiple Myeloma	Symmetric, distal sensory or sensorimotor; usually mild	Bone pain, fatigue, anemia, hypercalcemia, renal insufficiency	lgM-к or IgG-к (>3 g/dl)	Axonal
Waldenström's macroglobulinemia	Symmetric, distal sensory or sensorimotor, progressive; may simulate CIDP	Fatigue, weight loss, oronasal bleeding, visual blurring, encephalopathy	IgM-к	Demyelinating
Osteosclerotic myeloma	Symmetric, proximal and distal sensorimotor, progressive areflexia; simulates CIDP	POEMS syndrome – elevated VEGF, Castleman's disease	lgG-λ or IgA-λ	Demyelinating
Amyloidosis	Symmetric, distal, progressive, painful, sensory, and autonomic symptoms	Congestive heart failure, Renal failure, hepatosplenomegaly, macroglossia, weight loss	lgG- λ or lgA- λ	Axonal
Cryoglobulinemia	Symmetric or multifocal, distal, painful, sensory or sensorimotor; multiple mononeuritis	Hepatosplenomegaly, purpura, arthralgias, leg ulcers, Raynaud's phenomenon	IgM or IgG	Axonal
Lymphoma (Castleman's disease, hypersensitivity adenopathy, and chronic leukemia)	Variable: pure sensory or pure motor, sensorimotor, motor neuron disease; may simulate CIDP or Guillain– Barré syndrome	Lymphadenopathy, fatigue, weight loss, POEMS syndrome	IgM or IgG	Axonal demyelinating; Motor neuronopathy
MGUS	Tremor, sensory loss, ataxia (anti MAG/SGPG)	None	IgM (60%); k>1 IgG (30%), A(10%)	Demyelinating Axonal

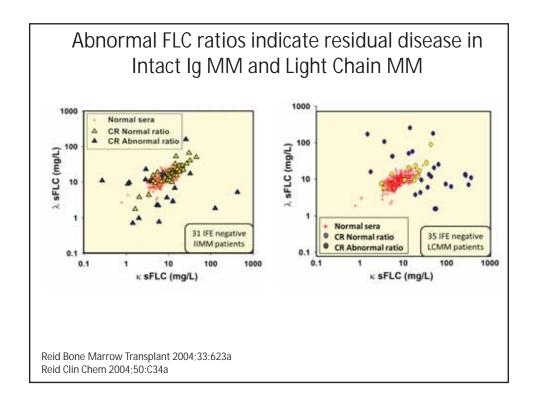


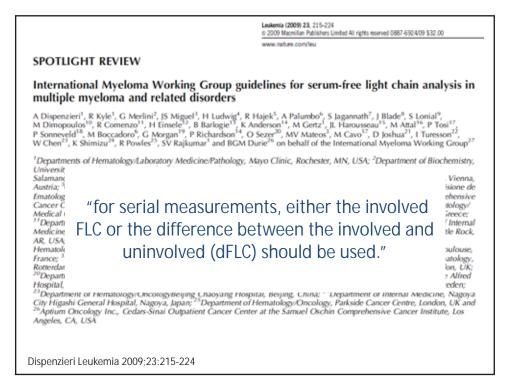




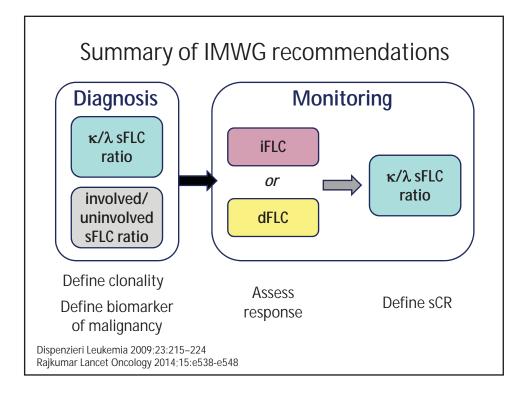
-		1
Study	Sensitivity	
SPEP	-81%	
Serum IFE	~94%	
UPEP + urine IFE	~100%*	
Serum free light chair	ns ~85%	
Serum IFE + SFLC	~99%	
* 100% of samples serve considered abronnel by unre- unree M spike on PE.	FE based on the definition of the cohort, but not all	Of unvestaged in this study had a

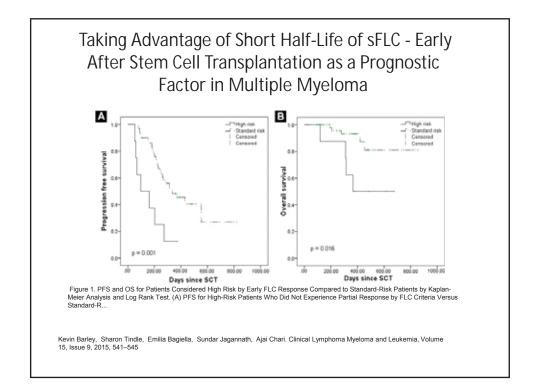




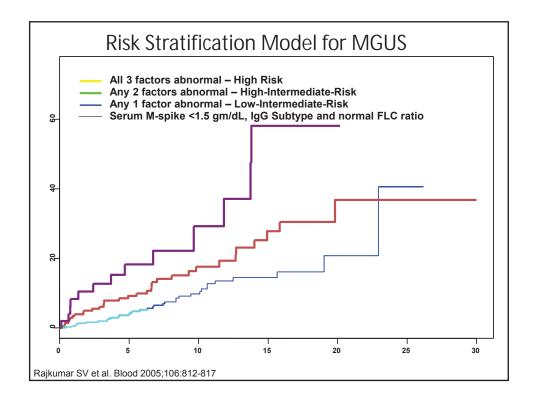


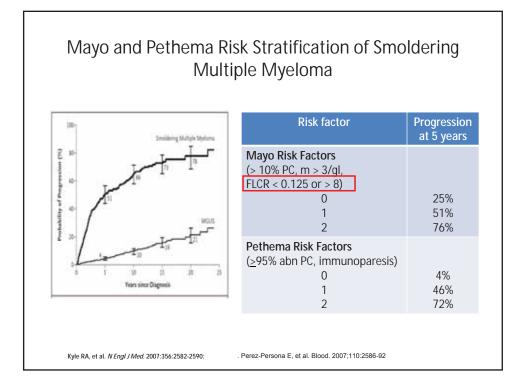
- Differential Diagnoses
- Freelite
 - Diagnosis
 - Monitoring
 - FLCR for initial diagnosis or evaluation of residual disease
 - dFLC for response assessment
 - Prognosis
- Hevylite
 - Diagnosis
 - Monitoring

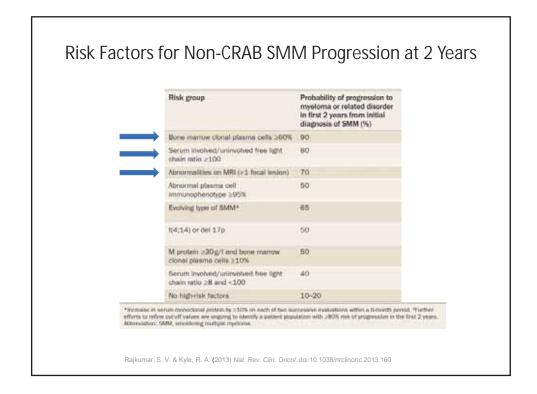

			?)	
	к sFLC (mg/L)	λ sFLC (mg/L)	κ/λ sFLC ratio	dFLC (mg/L)
Normal range	3.3 – 19.4	5.7 - 26.3	0.26 – 1.65	
Baseline	240	10	24	230
Post Treatment	24	1	24	23
κ/λ sł ratio		The same p <i>Therapy fa</i>	ore- and po <i>ilure?</i>	st-therapy

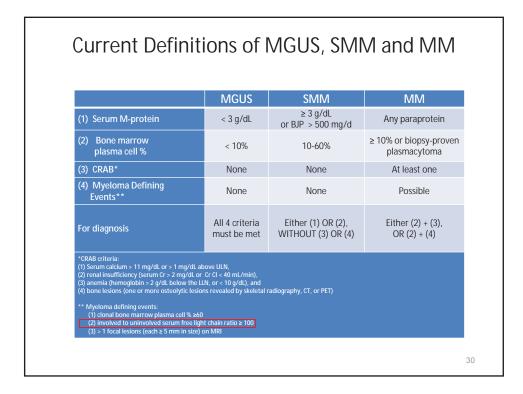


Neshouse D	epth: Convent		NG Criteria
		% Plasma Cells	
Response	M protein	in BM	Skeletal Disease
	normal FLC ratio AND	No clonal PC	
Stringent CR (sCR)	PEP/IFE negative	AND< 5%	Stable
	PEP negative		
Complete Response (CR)	IFE negative	< 5%	Stable
	PEP negative but		
Very Good PR (VGPR)	IFE positive	< 5%	Stable
	> 50% reduction in SPEP		
	> 90% reduction in UPEP		
Partial Response (PR)	> 50% dec Inv -UnInv FLC	N/A	Stable
Stable Disease (SD)	Not meeting crite	ia for sCR, CR, VO	PR, PR nor PD
	> 25% increase (SPEP by		
	0.5, UPEP by 0.2,		New bone lesions
Progressive Disease (PD)	Inv- UnInv FLC by 10)	25% increase	or increased size




Standard system [37]	staging	ng/L) a and III	stem is based on NT-proBNP (cutoff 332 nd cTnT (cutoff 0.035 ng/mL). Stage I, II, , patients have none, one or two markers he cutoffs, respectively.				
Revised system [38]	staging	The revised staging system is based on NT- proBNP (cutoff 1800 ng/l), cTnT (cutoff 0.025 ng/mL), and dFLC (cutoff 180 mg/l). Stage I, II, III, and IV patients have none, one, two or three markers above the cutoffs, respectively.					
Type of resp	onse [14	31	Definition				
			Negative serum and urine				
Complete re	sponse		immunofixation and normal FLC κ/λ ratio				
Complete re Very good p	·	ponse					
· .	- artial res	ponse	ratio				
- Very good p	artial res	ponse	ratio dFLC <40 mg/L				





Smoldering Multiple Myeloma (SMM): Predictive Value of Free Light Chains and Group Based Trajectory Modeling (GBTM)

Vernon Wu, Erin Moshier, Ajai Chari ASCO 2017 Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY

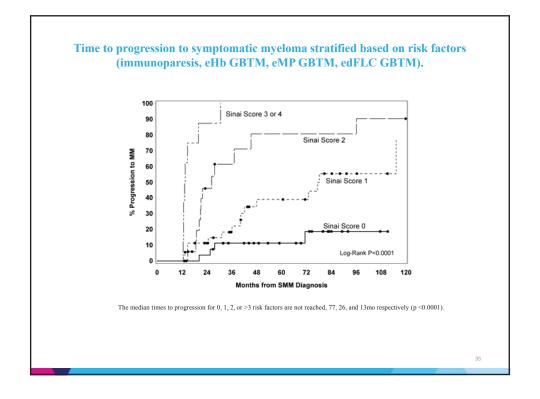
	Mayo Clinic	University of Athens	University of Pennsylvania	Denmark	MMGIMEMA LatiumWorking Group	Mbunt Sinai
Years of investigation	1970-2010 (FLCR), 1996-2010 (BIVPC)	-	2008-2012	2005-2013	1980-2010	2010-2015
Number of Centers	single	-	single	multi	multi	single
Inclusion Criteria†	yes	-	-	yes	yes	yes
FLOR						
Л	586	96	118	209	-	185
FLCR≥100 (n/%)	90(15%)	-	11(9%)	23(11%)	-	27(15%)
median TIP (mo)		13mo	20mo	_*	-	40mo
2 year progression (%)		98%**	64%	30%	-	44%
Overall progression tt (%)		100%	-	-	-	56%
BMPC						
 	655	96	121	-	397	273
BIVPC≥60 (n/%)	21(3.2%)	8(8%)	6(5%)	-	10(2.5%)***	22(8%)
median TTP (mo)		15mo	-	-	-	31mo
2 year progression (%)	95%	95.5%****	100%	-	100%	41%
Overall Progression (%)	-	100%	100%	-	100%	73%

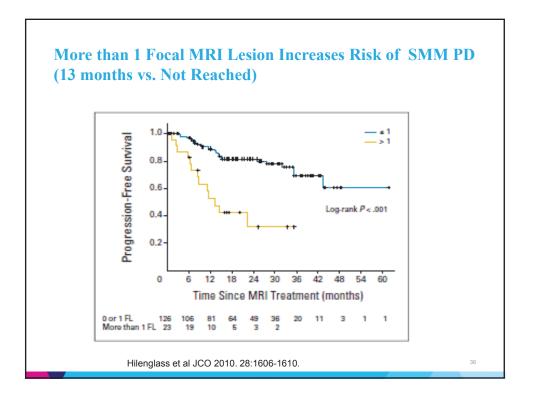
2. Kastritis E et al. Leukemia 2013;27:947-53. 4. Sorrig R et al. Eur J of Haematology 2015.

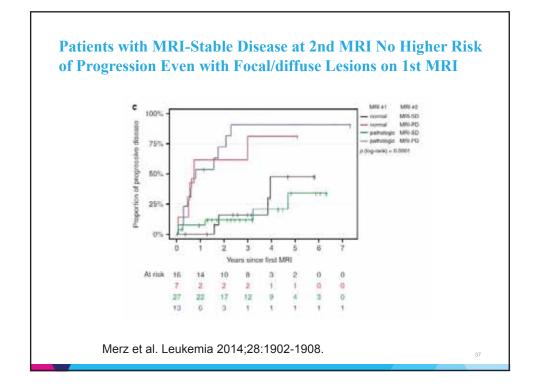
32

of Crour	-Rased '	Traii	eto	rv Mo	deling	Factor	· C
n Oroup	-Dascu	11 ajv		i y 1110	uting	; F actor	3
		- Deals					Disensatia
n (%) med	lian TTP (mo)	g-Rank 2	y PD %	overall PD %	Specificity	% Sensitivity %	Diagnostic
.,	· · P	-value	-				Accuracy
		<0.0001			000/	270/	79%
	20.3		43%	00%	69%	31%	1970
38(21/0							
112 (41%)	115.2		14%	38%			
33 (12%)	39.8	0.0230	36%	58%	82%	43%	74%
128 (47%)							
		0.0028					
	37.2		32%	63%	88%	29%	78%
146 (53%)							
104 (2000)	115.2		120/	220/			
		0.0586			85%	33%	76%
146 (53%)			5570	.3/0	55/0	5570	10/0
	n (%) mec 180 (66%) 35 (13%) 58 (21%) 112 (41%) 33 (12%) 128 (47%) 128 (47%) 108 (47%) 106 (53%) 19 (7%) 146 (53%) 104 (38%) 23 (7%)	n (%) median TTP (mo) 180 (66%) 1152 35 (13%) 263 58 (21%) 263 112 (41%) 1152 33 (12%) 398 128 (47%) 398 128 (47%) 372 108 (40%) NtcReached 19 (7%) 372 146 (53%) 1152 23 (5%) 453	n (%) median TTP (mo) Log-Rank 2 P-value 2 180 (66%) 1152 35 (13%) 26.3 -0.0001 38 (13%) 26.3 -0.0001 38 (12%) 39.8 -0.0230 33 (12%) 39.8 -0.0230 33 (12%) 39.8 -0.0230 128 (47%) 37.2 -0.0238 19 (7%) 37.2 -0.0238 10 (7%)	n (%) median TTP (mo) Log-Rank 2y PD % P-value 2y PD % 180(6699) 1152 - 0.0001 14% 58(13%) 26.3 - 0.0001 14% 58(12%) 26.3 - 0.0001 14% 112(41%) 1152 - 0.0120 14% 133(12%) 29.8 - 0.0120 14% 128(40%) Nbl Reached - 0.0028 14% 106(40%) Nbl Reached - 0.0028 14% 106(53%) - 0.00586 13% 30% 30% 30%	n (%) median TTP (mo) Log-Rank P-value 2y PD % overall PD % 180 (66%) 1152	n (%) median TTP (mo) Log-Rank P-value 18D(6699 1152	180 (66%) 115.2 -0.001 14% 35% - 35 (13%) 26.3 -0.001 14% 35% - - 112 (41%) 115.2 -0.0021 14% 38% - - - 112 (41%) 115.2 0.0230 14% 38% -<

 Over 1 year

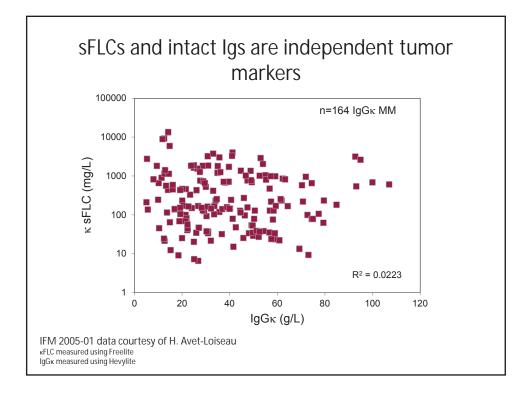

 - eHb patients decrease of 1.57 g/dL (95% CI: 1.29, 1.84)

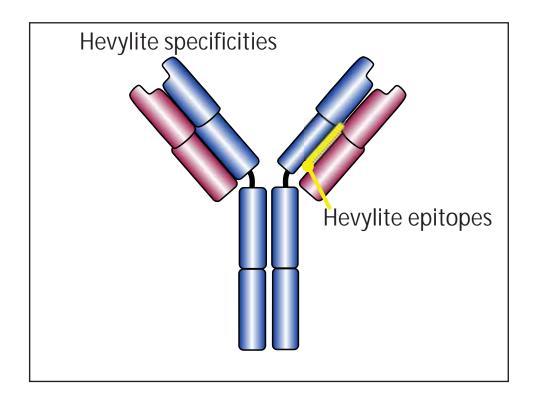

 - eMP patients experienced either a 64% [95% CI: 44%, 83%] increase in M-protein

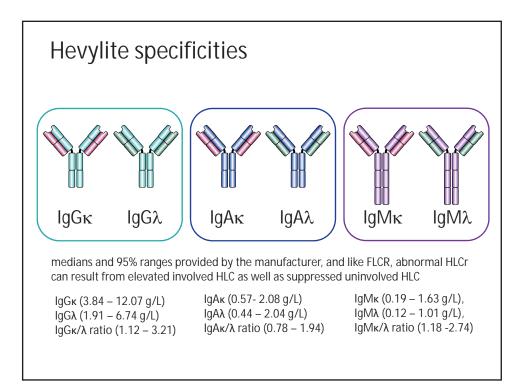

 - eFLCr patients on average experienced either a 188% [95% CI: 183%, 193%] increase in FLCr

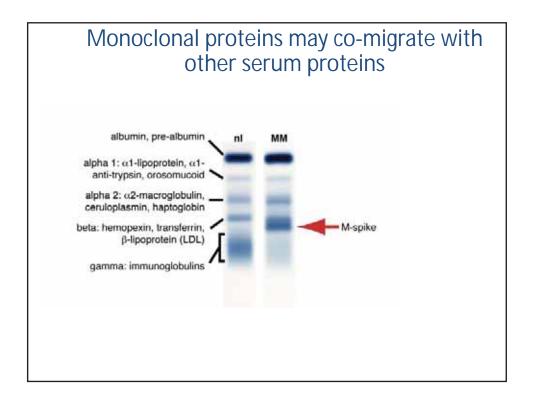
 - edFLC patients on average experienced a 169% [95%CI: 143%, 195%] increase in dFLC

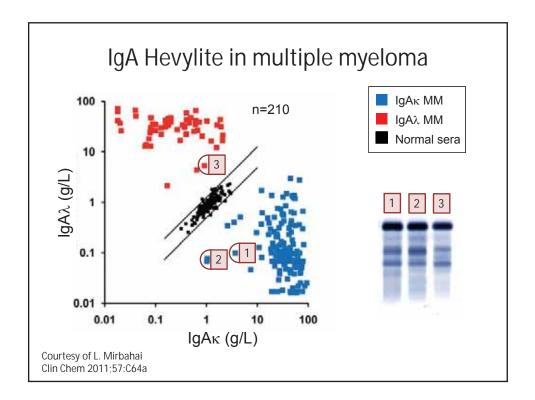
	Univariat		Multivaria	blo	
n=90†	HR[95%CI]	P-value	HR[95%CI] P-value		
Age	1.002 [0.97-1.03]	0.9007			
MaleSex	0.88 [0.47-1.65]	0.6824			
BI√PC≥20%	3.29 [1.45-7.49]	0.0046			
BI√PC≥60%	0.98 [0.30-3.25]	0.9790			
MProtein≥3g/dl	3.59 [1.80-7.17]	0.0003			
IgASIMM	0.72 [0.30-1.73]	0.4645			
Immunoparesis	2.90 [1.46-5.77]	0.0025	3.90 [1.80-8.44]	0.000	
FLCr≥100 and dFLC≥100	1.53 [0.59-3.99]	0.3827			
dFLC>100	1.36 [0.70-2.64]	0.3658			
eMP	3.64 [1.89-6.99]	0.0001	3.98 [1.80-8.44]	<0.00	
eHb	4.54 [2.22-9.29]	<0.0001	8.05 [3.53-18.35]	⊲0.00	
eFLCr	2.09 [1.04-4.21]	0.0395			
edFLC	3.02 [1.45-6.27]	0.0031	2.84 [1.28-6.29]	0.010	

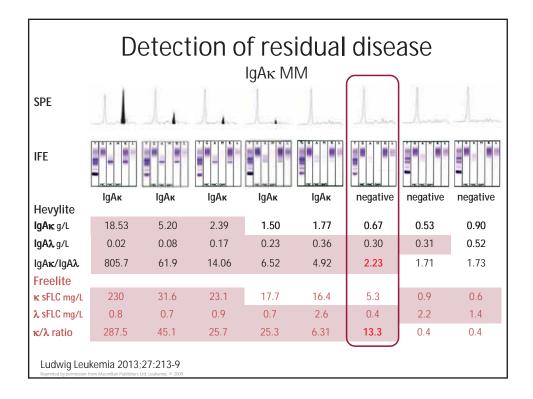


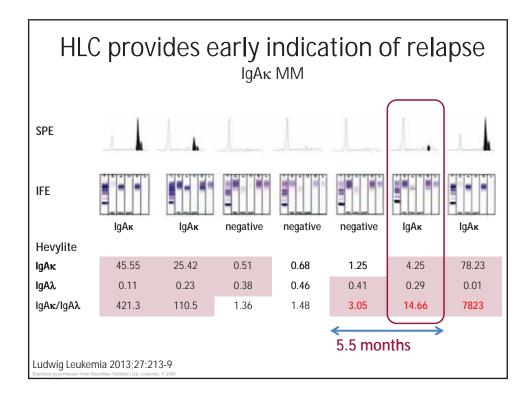


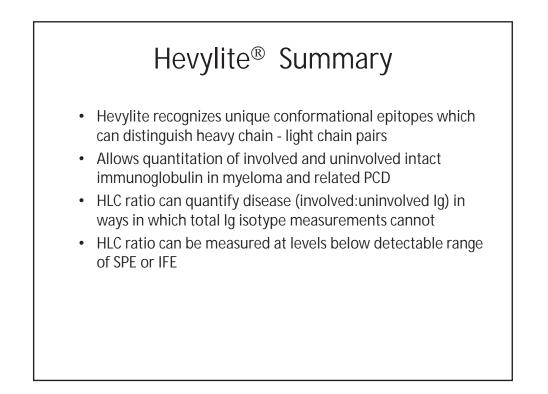


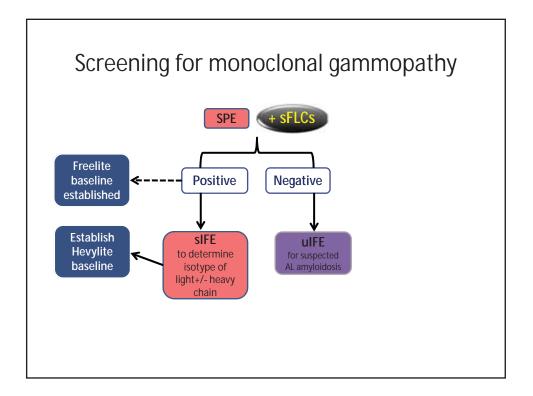

Early SMM Treatment vs Symptomatic Treatment -**Considerations for Future Therapeutic Studies Early treatment** Treatment @ Symptoms Clinical - Deep responses in SMM possible now - Insufficient data re improved OS and PFS - Treatment toxicity- Grade 3 /4 or chronic - Prevention/reduction of end-organ damage and infections Grade 1/2; QOL impairment/PROs - Potential for increased OS and ? cure - # needed to treat vs harm Patho-- Potential for increased curability due - Unclear impact on PFS2 physiologic to presence of less genomic complexity - Driver mutations have yet to be identified - Ability to target significant mutations - Disease heterogeneity Risk - Truly high-risk SMM very high - Lack of global concordance, consensus stratification probability of early progression regarding high-risk status - Kinetic risk stratification may mitigate - Need to incorporate additional phenotypic some biases and genomics features Trial design - Randomized early vs late treatment - Inability to specifically target using same regimen ethical & feasible significant/driver mutations - Stratify by time from diagnosis - Lead & length time biases can make benefits - Standardized sensitive osseous difficult to discern screening (WBLDCT, PET-CT, or MRI) - Fix duration of treatment - Less end-organ damage costs Economic - Likely prolonged therapy if not fixed duration - Potential for increased OS - ? Cure - Need for stem cell harvest if IMIDs used

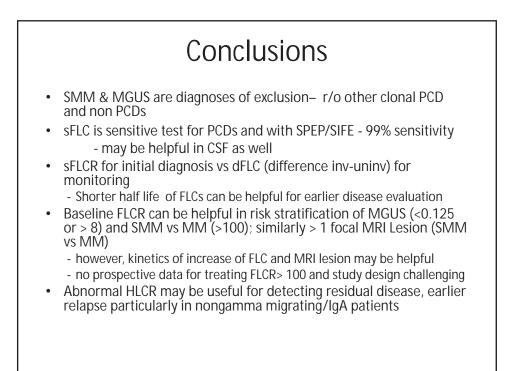




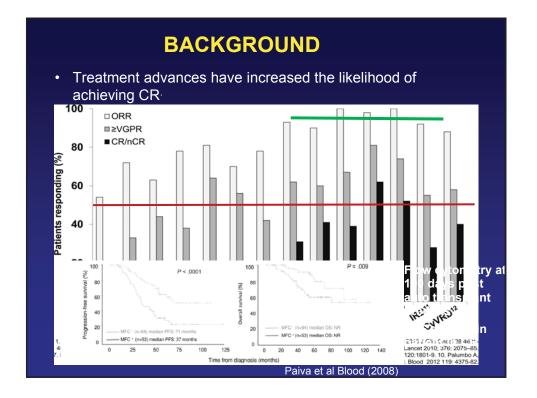



1-spike	Positio	n by M-j	orotein T	уре	
M-protein	M-spike position on SPEP (n)				
type	%, Alpha	% Beta	% NOT Gamma	N	
IgG	0	5	6	866	
IgA	0	58	58	425	
IgM	0	0	0	65	
IgD	0	0	0	65	
Free K	0	50	50	111	
Free L	6	33	39	177	
				1807	
			Wang et a	al. Cell Mol Immunol.	

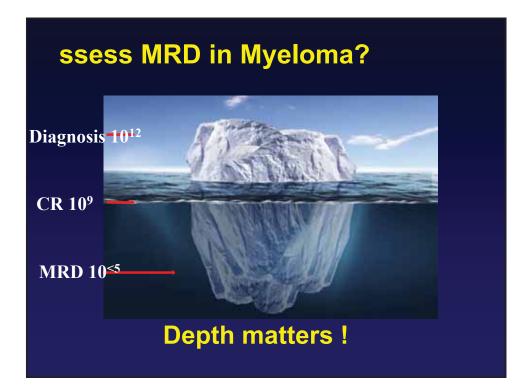




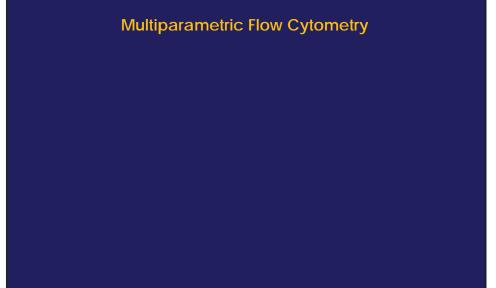
		lologio	measur	onnorna
	Complicated IgA n=46		Non-measurable n=92	
	HLCr normal	HLCr abnormal	HLCr normal	HLCr abnorm
qigs normal	3 (6.5%)	10 (21.7%)	45 (49%)	47 (51%)
qlgs abnormal	1 (2.2%)	32 (69.6%)	n/a	n/a
SPEP normal	2 (4.4%)	5 (10.8%)	27 (29.3%)	11 (12.0%)
SPEP abnormal	2 (4.4%)	37 (80.4%)	18 (19.6%)	36 (39.1%)
FLCr normal	2 (4.4%)	10 (22.2%)	36 (39.1%)	19 (20.7%)
FLCr abnormal	2 (4.4%)	31 (68.9%)*	9 (9.8%)	28 (30.4%)
IFE +	1 (2.2%)	0 (0%)	7 (7.6%)	4 (4,3%)
IFE +	3 (6.5%)	42 (91.3%)	38 (41.3%)	43 (46.7%)
Serological CR	1 (2.2%)	0 (0%)	7 (7.6%)	2 (2.2%)
Serological non-CR	3 (6.5%)	42 (91.3%)	38 (41.3%)	45 (48.9%)

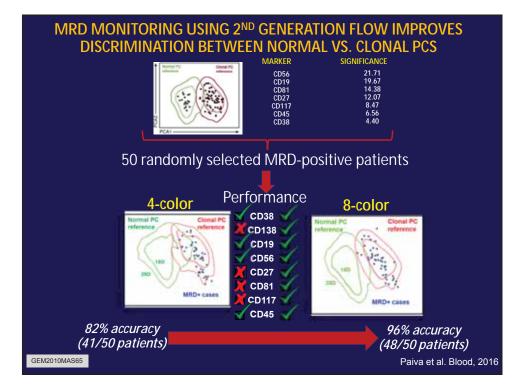

Minimal Residual Disease (MRD) in Multiple Myeloma: How and When to Do it?

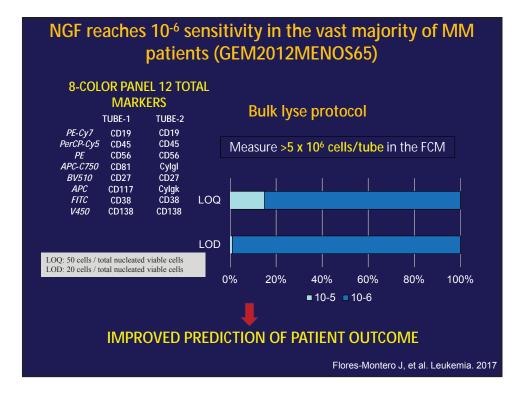

Nikhil C. Munshi, MD

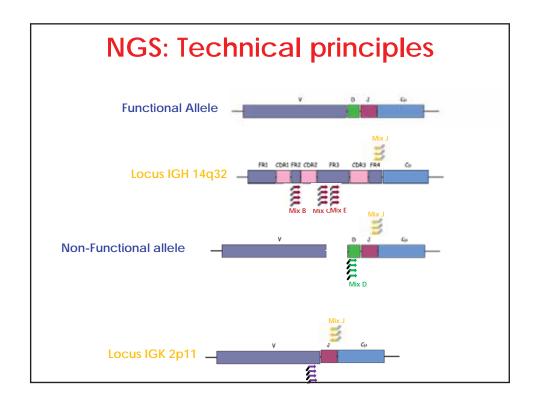

Professor of Medicine Harvard Medical School Boston VA Healthcare System Director of Basic and Correlative Sciences Dana-Farber Cancer Institute

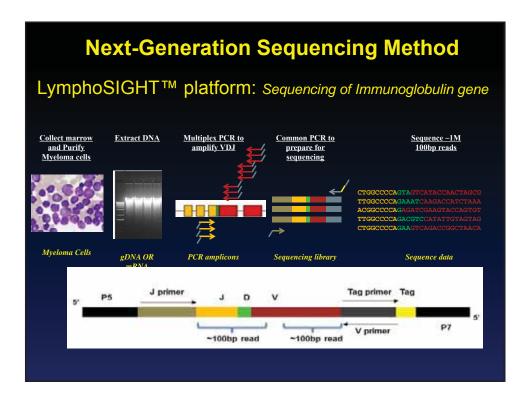
> DANA-FARBER CANCER INSTITUTE

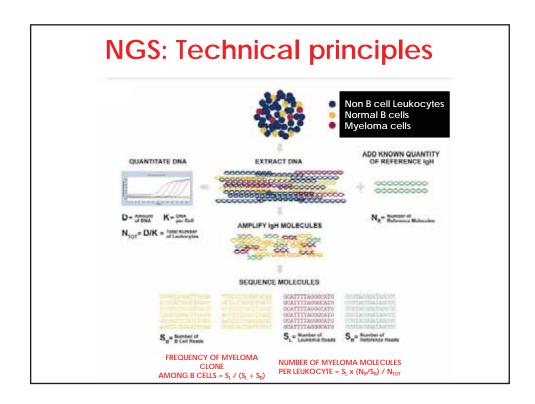


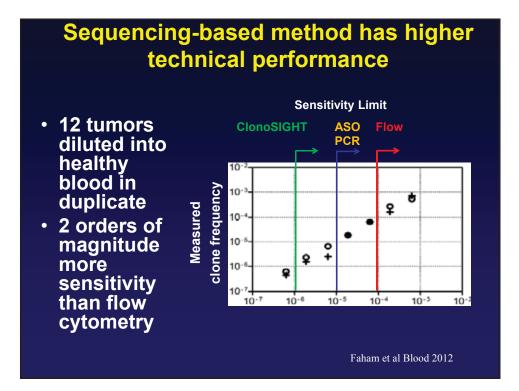


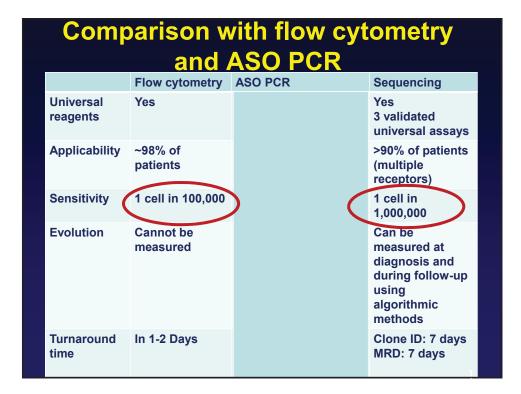


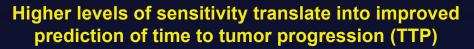

MRD: What are the techniques?

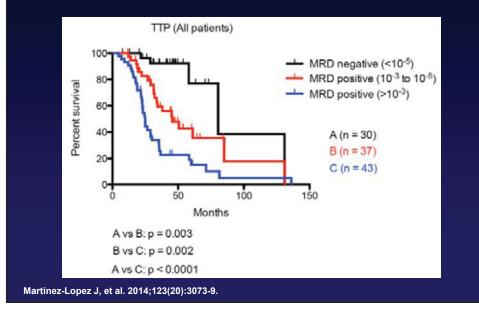


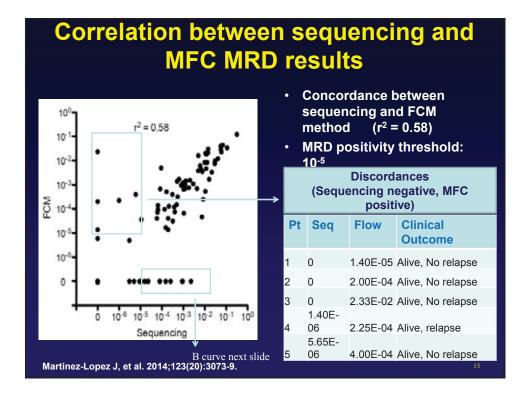


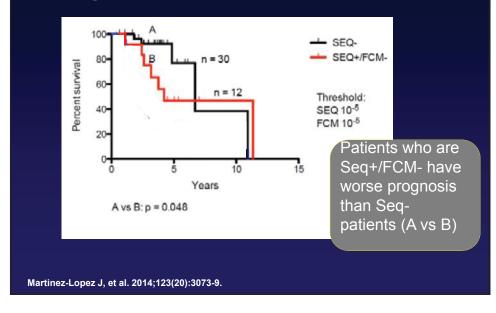


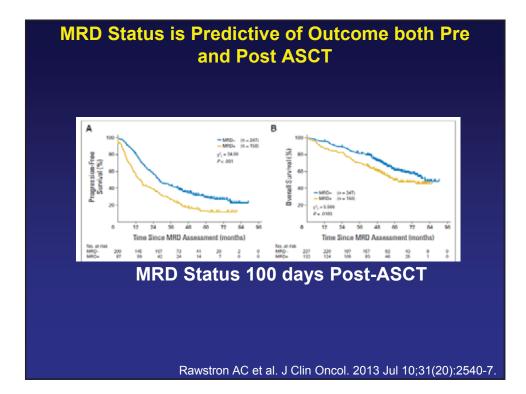

Studying Clone content by Immunoglobulin VDJ Rearrangement					
Semiline configuration Unignetit D to J recombination W to DJ recombination transcription, splicing 300 BP	Tansiation,	 Immunoglobulin loci Somatic hypermutation occurs frequently Enables identification of myeloma cells and analysis of phylogenetic relationship between different myeloma subclones 			

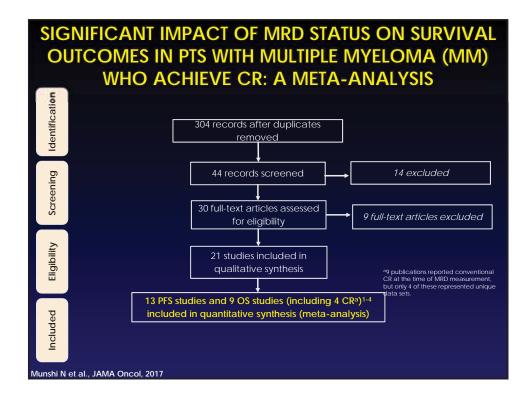


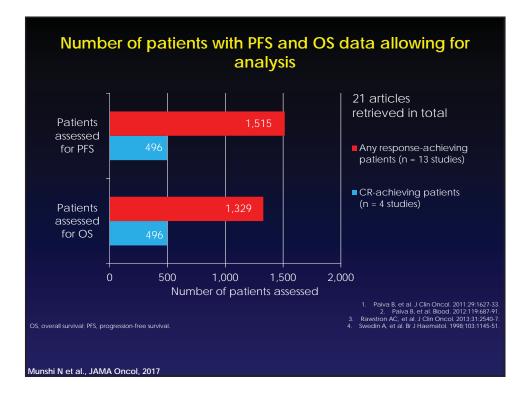


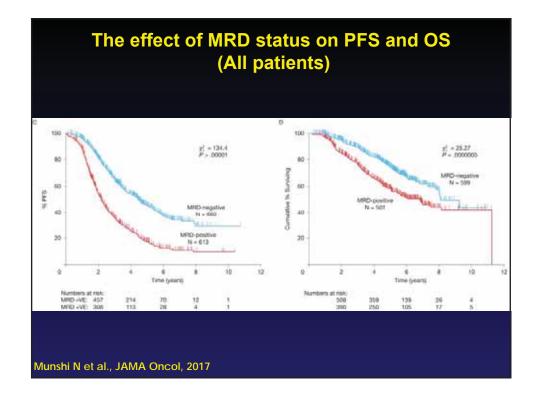


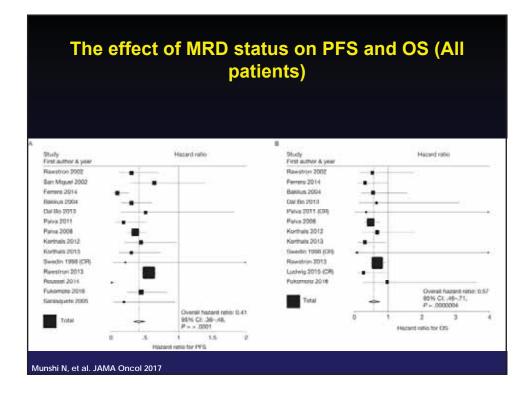


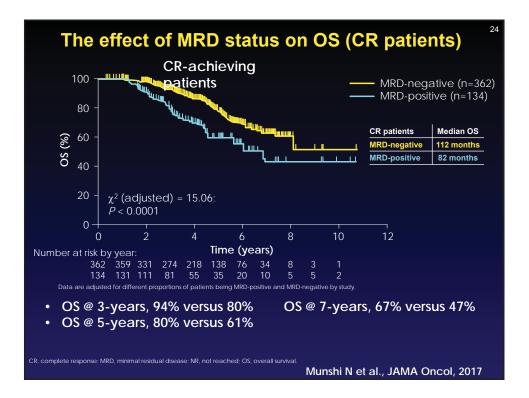


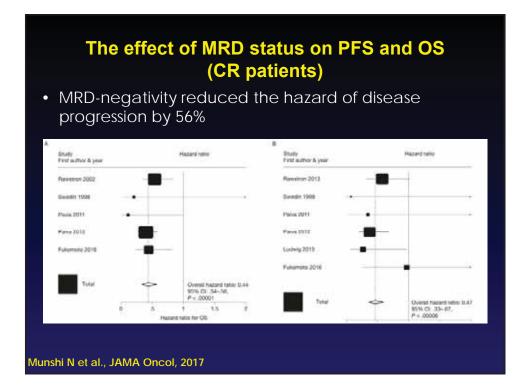


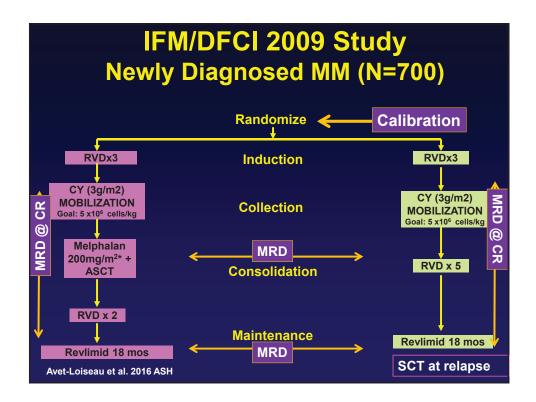

Sequencing method provides improved prognostic value compared to MFC

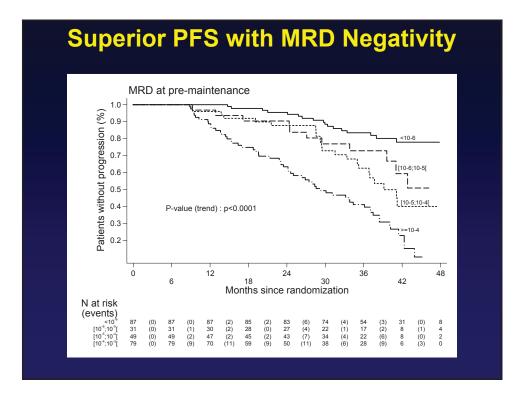




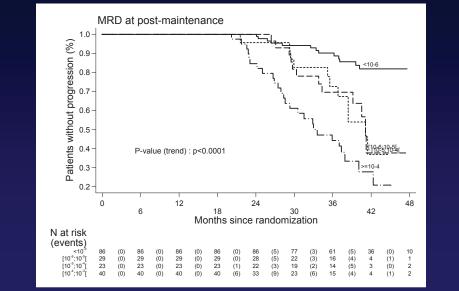


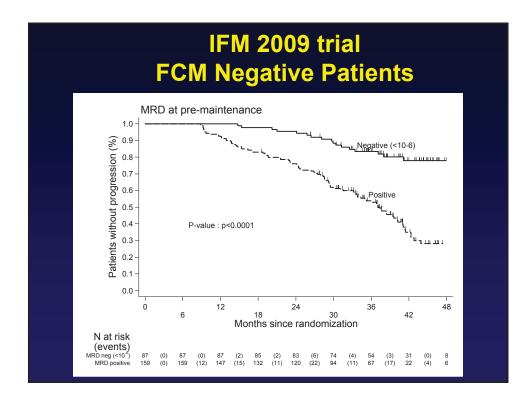


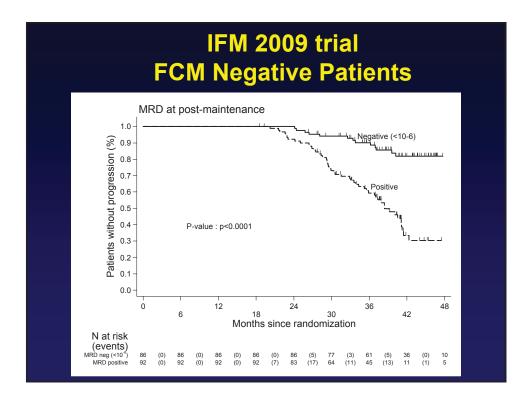


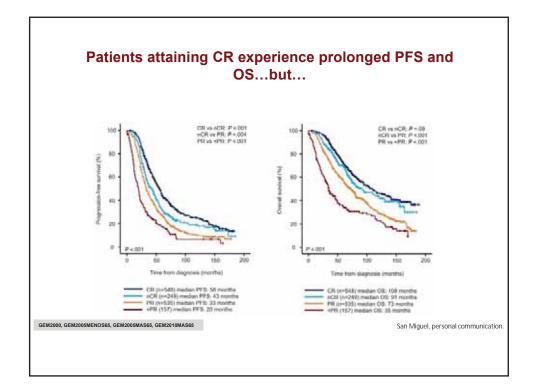

Conclusions of the meta-analysis

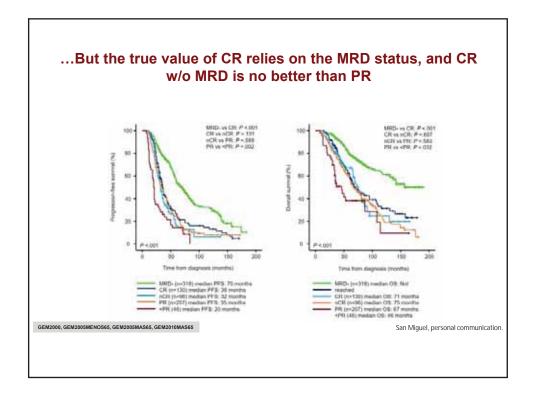
MRD is definitely predictive of both longer PFS and OS

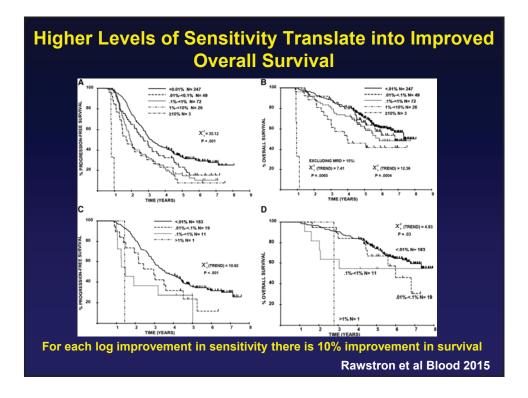

Most of the available results are from MFC

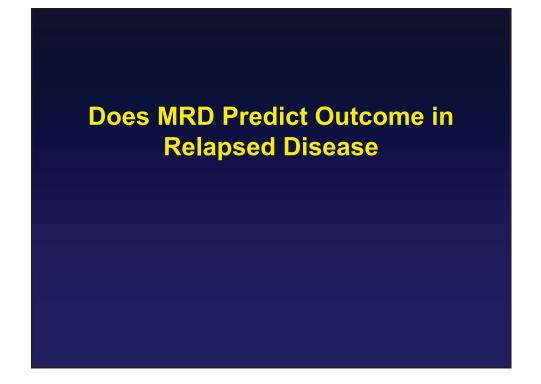

Time to Utilise MRD to direct therapy & MRD should be the surogate for outcome in MM

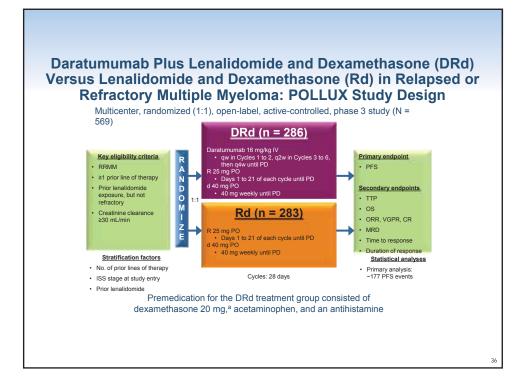


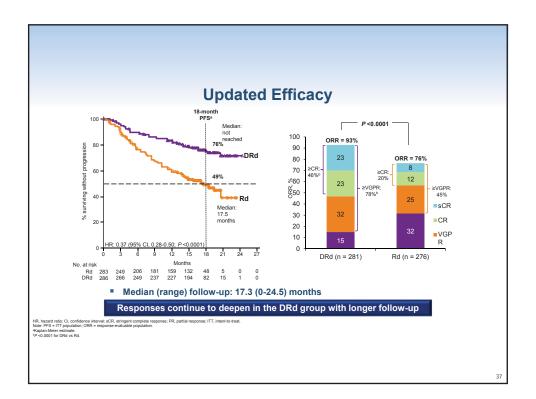


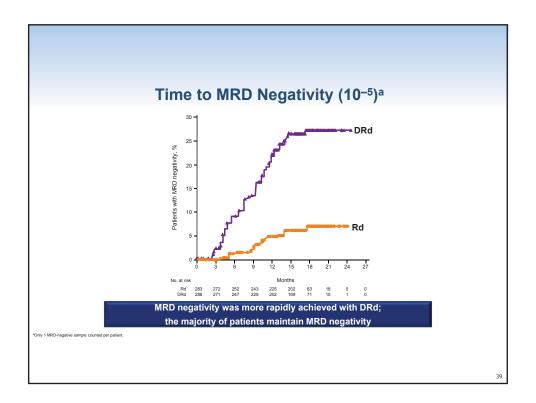


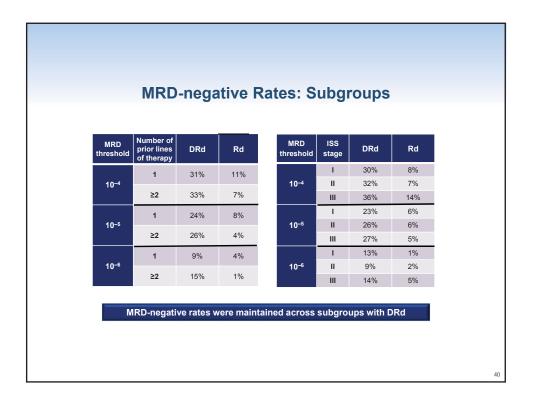


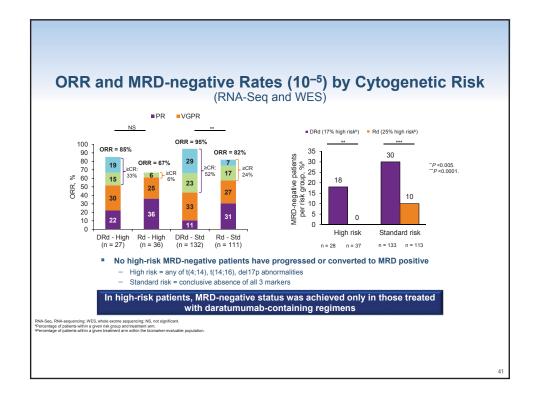


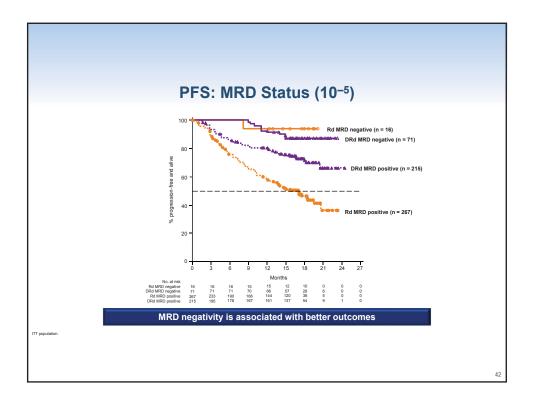


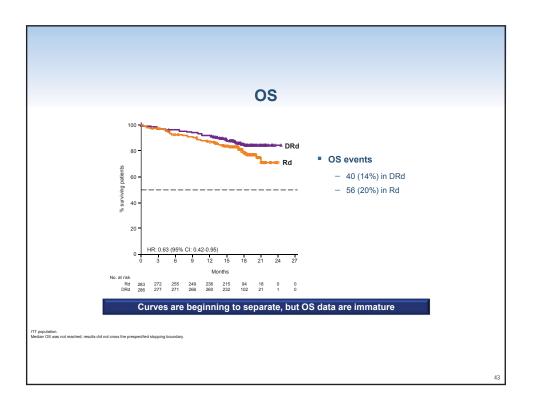


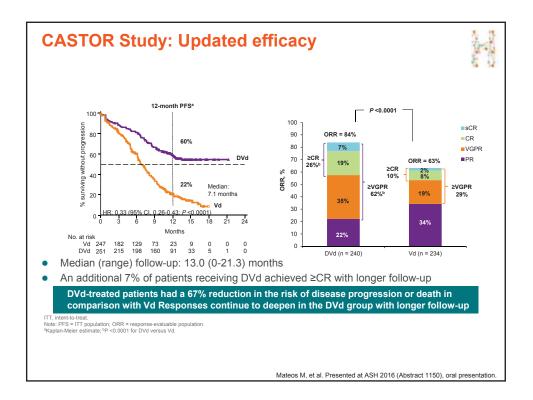


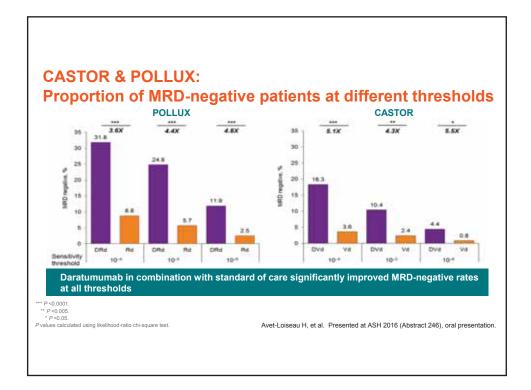


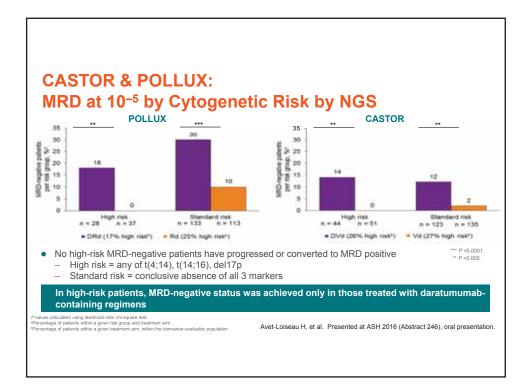


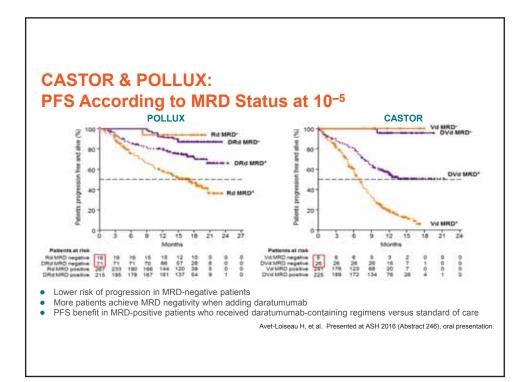


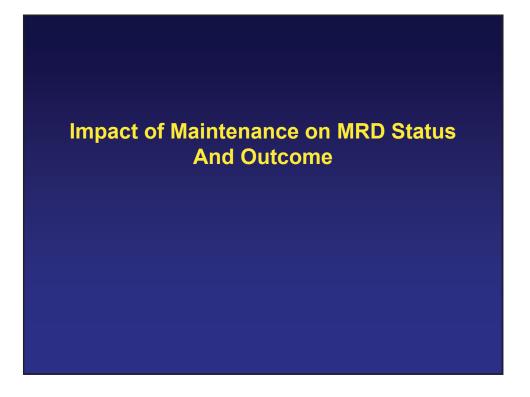


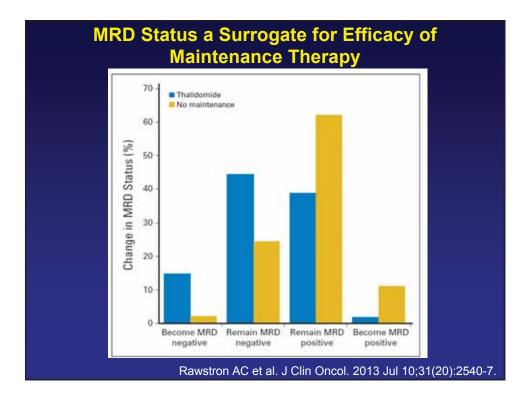


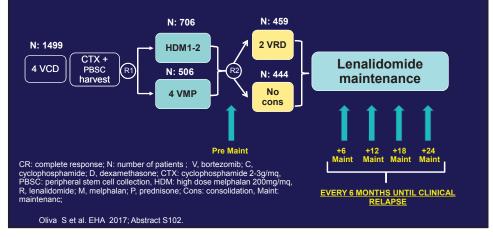






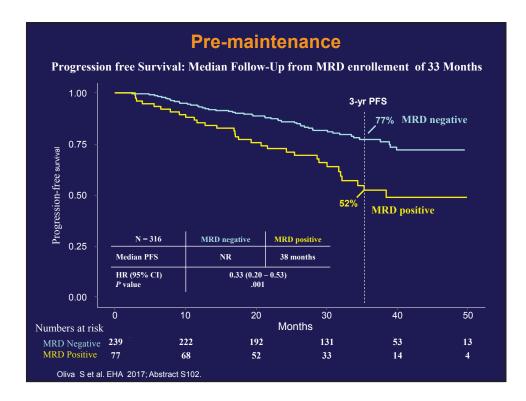


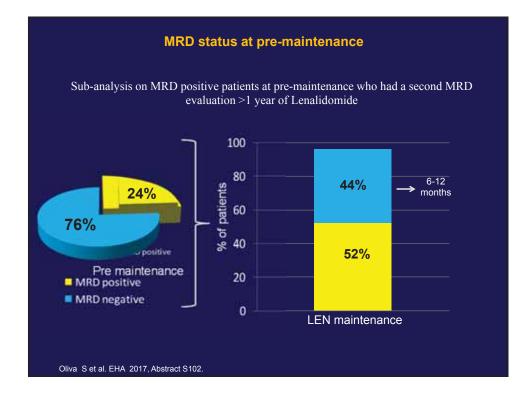


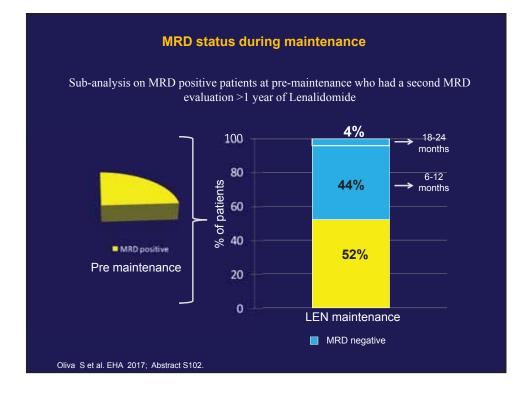

MRD Negativity Increases with Maintenance Therapy

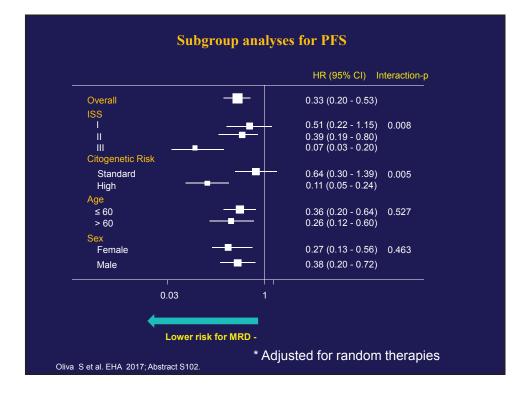
	Minimal Residual Disease Status	
	Negative	Positive
Response at the beginning of maintenance. (%)	24.6%	75.4%
Response after 12 months of maintenance. (%)	38.5%	61.5

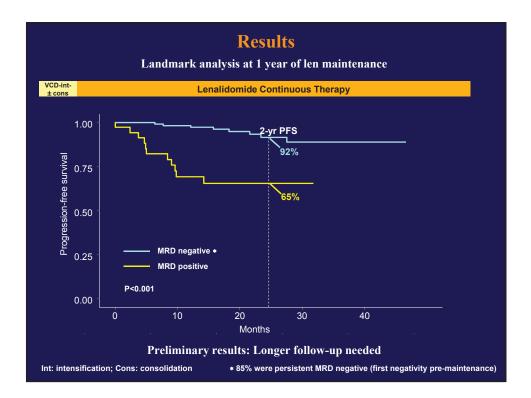

Methods MM patients enrolled in the RV-MM-COOP-0556 (EMN02/HO95 MM; NCT01208766)

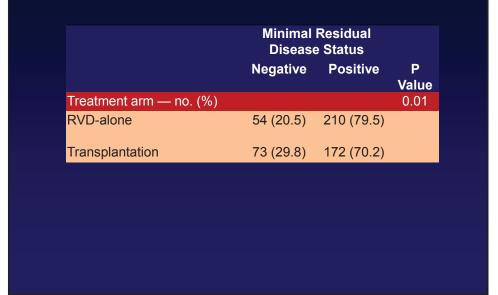

• Newly diagnosed ≤ 65 years

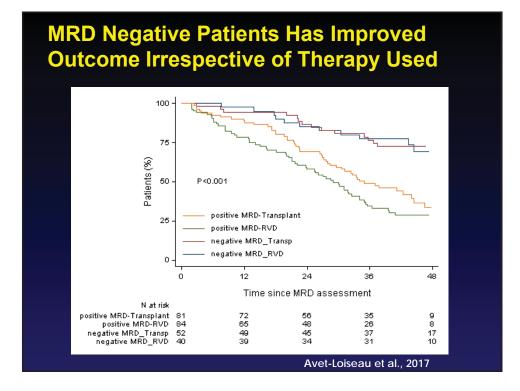

• MRD assessement in patients achieving suspected CR before lenalidomide maintenance

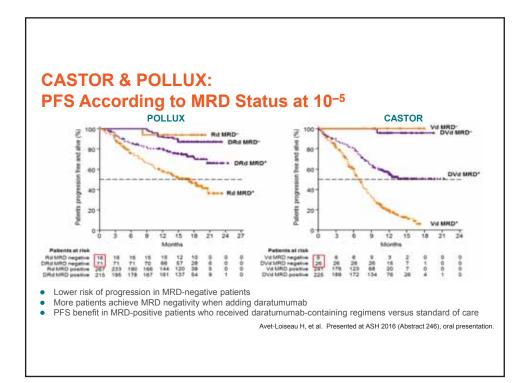



Methods MM patients enrolled in the RV-MM-COOP-0556 (EMN02/HO95 MM; NCT01208766) • Newly diagnosed ≤ 65 years • MRD assessement in patients achieving suspected CR before lenalidomide maintenance N: 706 N: 459 N: 1499 2 VRD HDM1-2 CTX + Lenalidomide PBSC (R1) N: 506 R2 N: 444 maintenance harvest

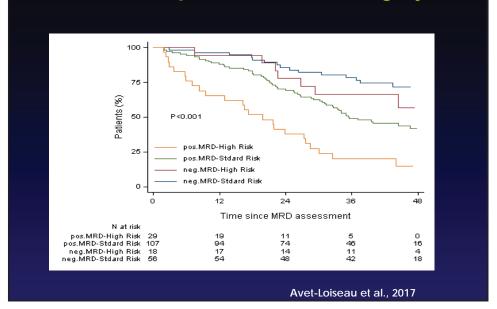


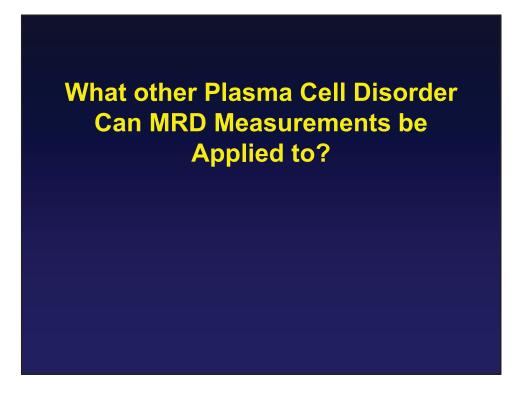


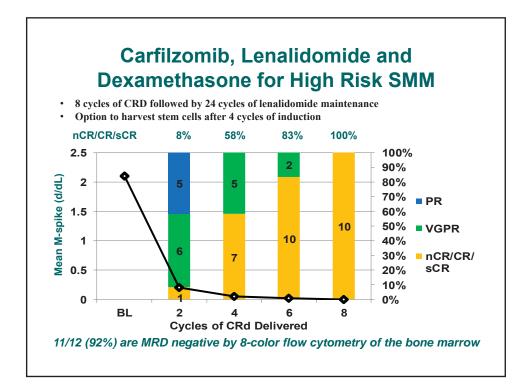




Higher MRD Negativity With High-dose Therapy

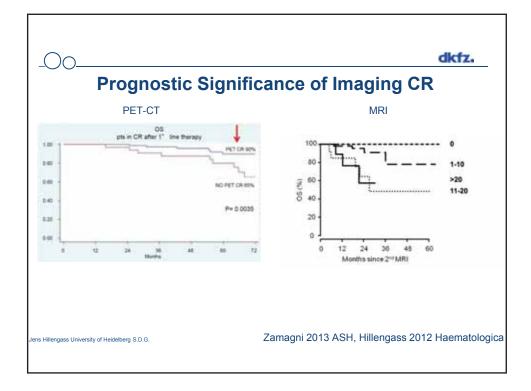


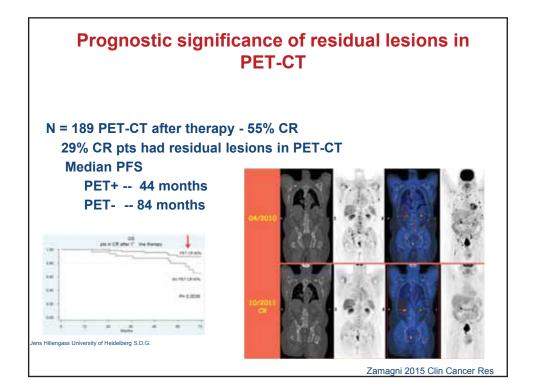




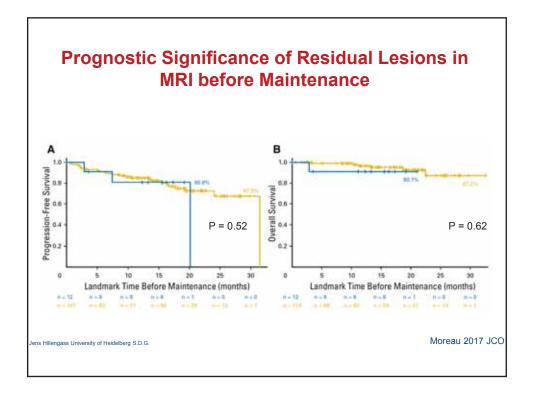
MRD Negative Patients Has Improved Outcome Irrespective of Risk Category

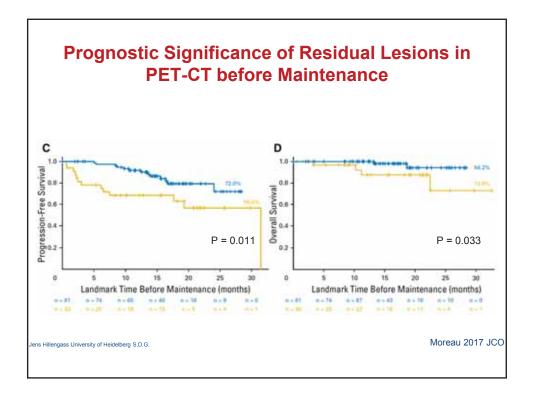
Male sex 5 (72) 4 (44) 0.156 Age, years 63 (55-68) 58 (54-76) 0.269 Organ involvement heart / kidney 3 (33) / 9 (100) 7 (58) / 10 (83) 0.301/0.337 Liver / >2 organs 0 (0) / 4 (44) 1 (8) / 6 (50) 0.543 / 0.820 Cardiac response at CR 1/2 (50) 4/6 (66) 0.750 (8 patients evaluable) Renal response at CR 3/9 (33) 6/9 (66) 0.201 (18 evaluable)	Variable	MRD+ (N=9) N (%) median (range)	MRD- (N=12) N (%) median (range)	Р
Organ involvement 3 (33) / 9 (100) 7 (58) / 10 (83) 0.301/0.337 Liver / >2 organs 0 (0) / 4 (44) 1 (8) / 6 (50) 0.543 / 0.820 Cardiac response at CR 1/2 (50) 4/6 (66) 0.750 (8 patients evaluable) 3/9 (33) 6/9 (66) 0.201	Male sex	5 (72)	4 (44)	0.156
heart / kidney 3 (33) / 9 (100) 7 (58) / 10 (83) 0.301/0.337 Liver / >2 organs 0 (0) / 4 (44) 1 (8) / 6 (50) 0.543 / 0.820 Cardiac response at CR 1/2 (50) 4/6 (66) 0.750 (8 patients evaluable) 7 3/9 (33) 6/9 (66) 0.201	Age, years	63 (55-68)	58 (54-76)	0.269
	heart / kidney Liver / >2 organs Cardiac response at CR (8 patients evaluable) Renal response at CR (18 evaluable)	0 (0) / 4 (44) 1/2 (50) 3/9 (33)	1 (8) / 6 (50) 4/6 (66) 6/9 (66)	0.543 / 0.820 0.750 0.201
BMPC (%) (diagnosis) 9 (4-30) 7 (3-20) 0.306	BMPC (%) (diagnosis)	9 (4-30)	7 (3-20)	0.306


Results
 A further improvement of cardiac function compared to the time of CR attainment All 5 evaluable patients with MRD-; while Zero of 2 MRD + (P=0.047).
 Renal response 7 of 8 (87%) subjects with MRD-; while 4 of 8 (50%) with MRD+ (P=0.153).
 Overall, further improvement of cardiac or renal function after CR was significantly associated with absence of MRD (P=0.012).


Methodological Limitations

- · BM-based MRD evaluation limited to one site
 - Plasmacytoma?


Solutions


- Imaging techniques: PET-CT
- cfDNA sequencing analyses? → ongoing
- Circulating tumor cell Analysis

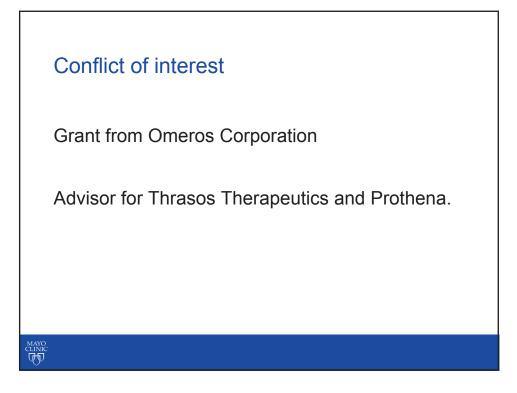
At diagnosis:MRI positive in 127/134 (95%),PET-CT positive in 122/134 (91%)(McNemar test = 0.94, p-value = 0.33).

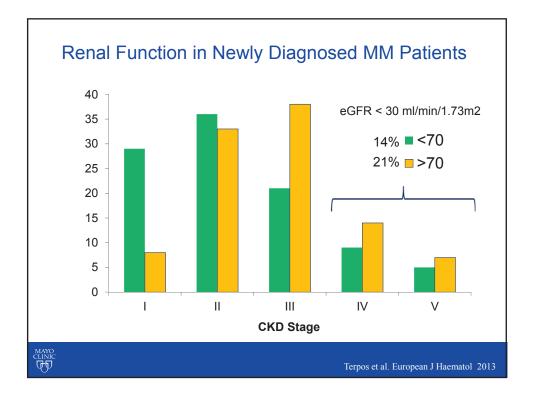
We Need To Move On....

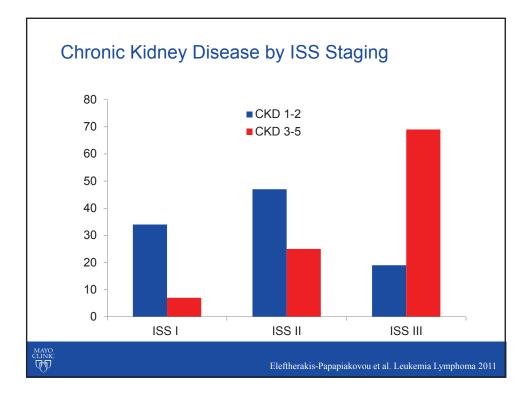
• Do we treat patients with MRD- vs MRD+ status differently?

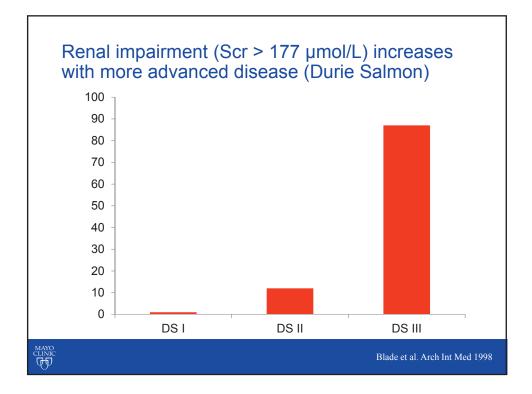
- Develop MRD-based studies to decide
 - Whether MRD
 - needs consolidation and/or maintenance
 - Type and length of maintenance?
 - Should all patient achieve MRD- status
 - Whether MRD+ should get more treatment, do we treat them as resistant patients?
 - Does early detection of appearance of clonal cells indicative of clinically meaningful relapse?
 - · Does it suggest need for intervention?

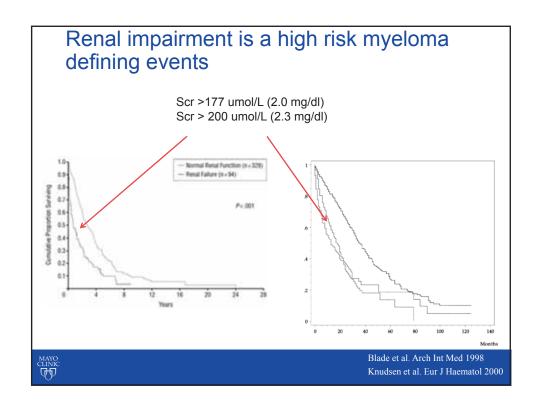
MRD Assessment Is a Tool to Measure Response in Patients With MM

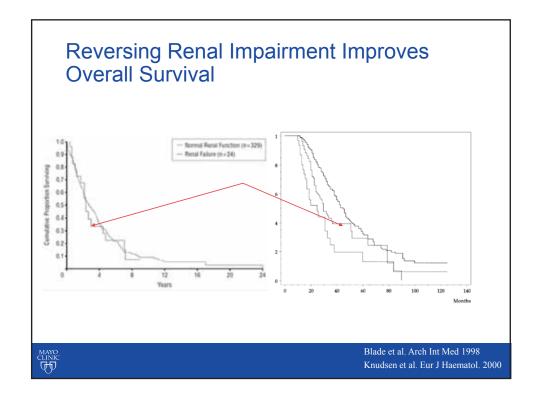

MRD negativity is correlated with longer PFS¹⁻³

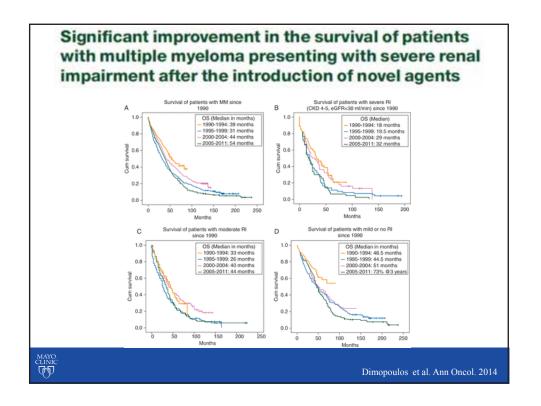

Establish standard definition for MRD negativity and timing of MRD assessment

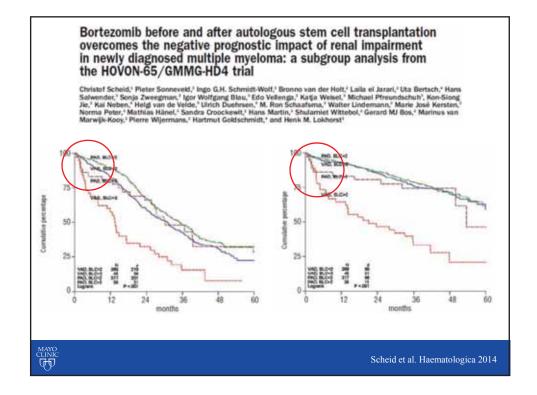

- 2016 IMWG criteria definition of 10⁻⁵ sensitivity^{4*} But may need revision
 - Optimal timing of MRD assessment at CR. VGPR?





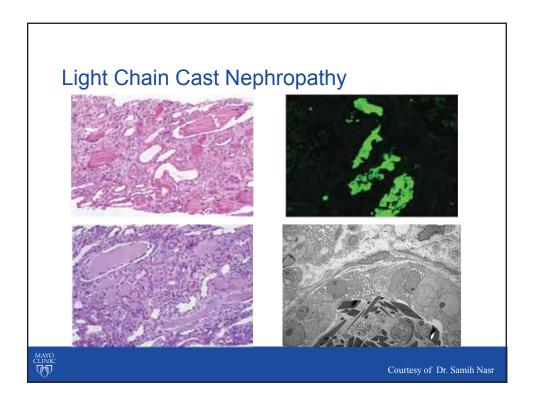


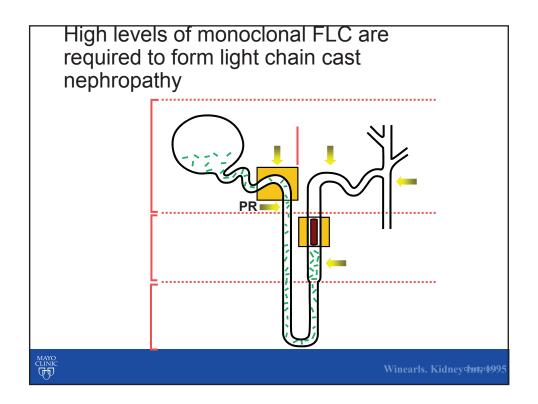


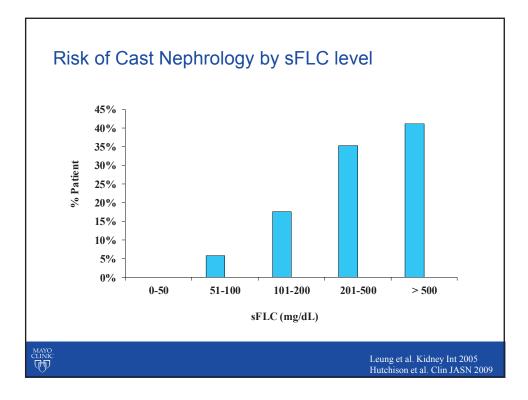


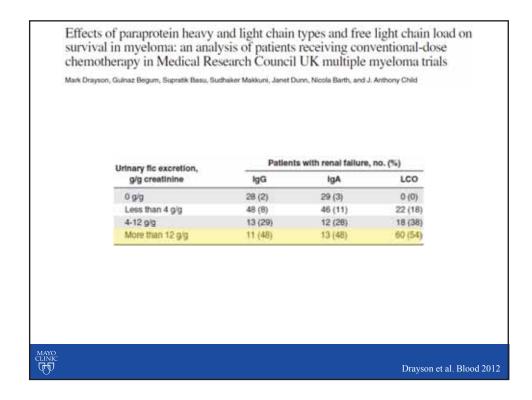
Diagnostic criteria of plasma cell dyscrasias

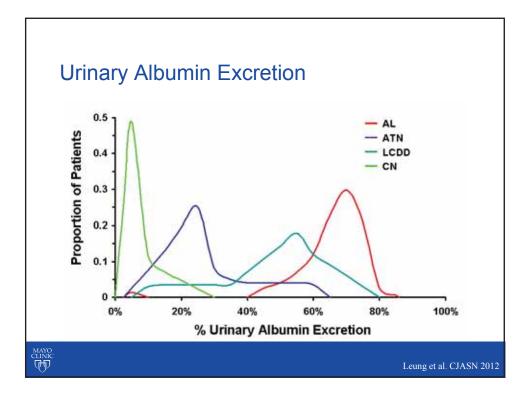
< 3 g/dL	\ge 3 g/dL	\ge 3 g/dL
< 10%	≥ 10%	$\geq 10\%$
absent	absent	+/-
<100	<100	>100
ells < 60%	< 60%	> 60%
≤ 1	≤ 1	> 1
Observe	Observe/Clin trial	Treat
	< 10% absent absent absent <100 ells < 60% ≤ 1	$< 10\%$ $\geq 10\%$ absentabsentabsentabsentabsentabsentabsentabsent <100 <100 ells < 60%

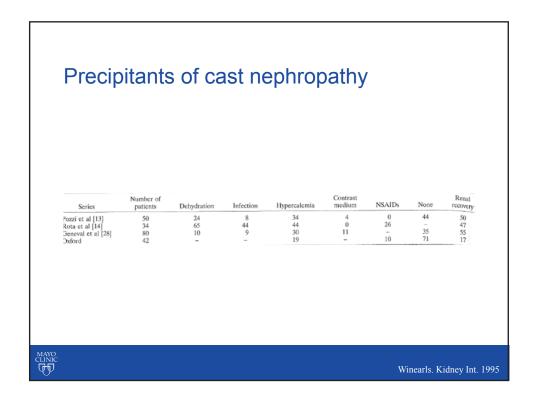

International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma

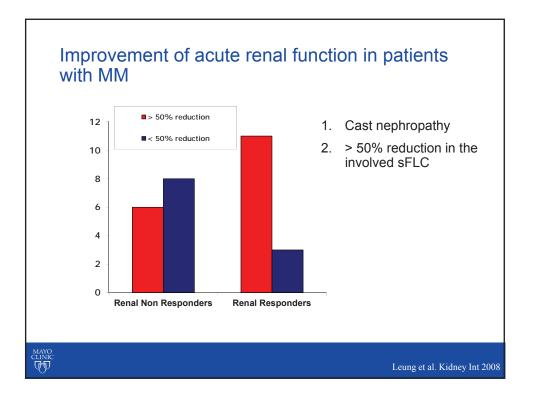

S Vincent Rajkumar, Meletias A Dimopoulas, Antonio Palumba, Joan Blade, Giampaolo Merlini, Maria-Victoria Mateos, Shaji Kumar, Jens Hillengass, Efstathics Kastritis, Paul Richardson, Ola Landgren, Bruno Paiva, Angela Dispenzieri, Brendan Weiss, Xavier Let.eu, Sonja Zweegman, Sagar Lonial, Laura Rosinol, Elena Zamagni, Sundar Jagannath, Orhan Sezer, Sigurdur Y Kristinsson, Jo Caers, Saad Z Usmani, Juan José Lahverta, Hans Erik Johnsen, Meral Beksac, Michele Cavo, Hartmut Goldschmidt, Evangelas Terpos, Robert A Kyle, Kenneth C Anderson, Brian G M Durie, Jesus F San Miguel

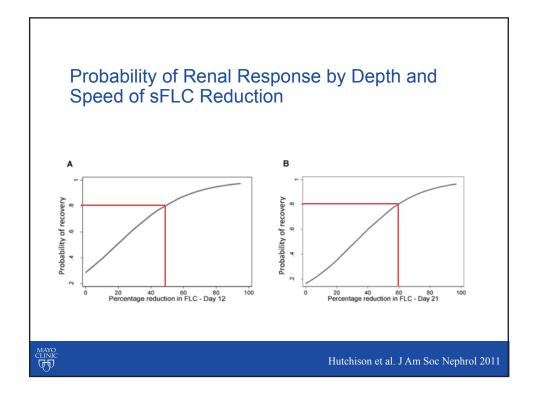

- Julium admining sevents Evidences of and angue damage that can be attributed to the underlying plasm profileration denotes, specification of 25 mercel3, (~1 mg/d). Mayber that the upper latest of memoir ar-25 premotils, (~1 mg/d). Mayber that the upper latest of memoir ar-25 premotils, (~1 mg/d). Boyout insufficiency contained observed ~41 mg/de memoir to server conder ~527 pmmills, (~2 mg/d). A Assertian Summaphilon ratios of ~230 gd, before the lower limit of memoir. Names denotes are some observed to be premound added a landower for the observed. B Boyout Insurance and the memoir and added to be asserted on the observed of the limit.
- - n on sloktal subography, CT, or share one to mant the
- Bore losie PET-CT1
- Ary one or more of the following lummakers of multiplancy Ocnal hour manuse planna and peramtage? above Involved annexated annex free light chain nated, a 200 it heal lesions on MRI studient

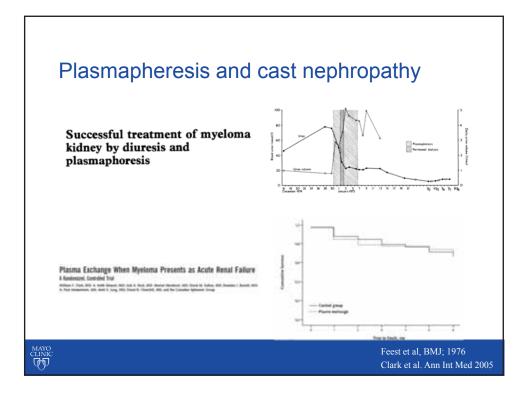

The criteria have also been updated to clarify that only renal failure caused by light-chain cast nephropathy (based on typical histological changes or presumptive diagnosis based on the presence of high involved FLC levels, typically >1500 mg/L} is regarded as a myeloma-defining events.

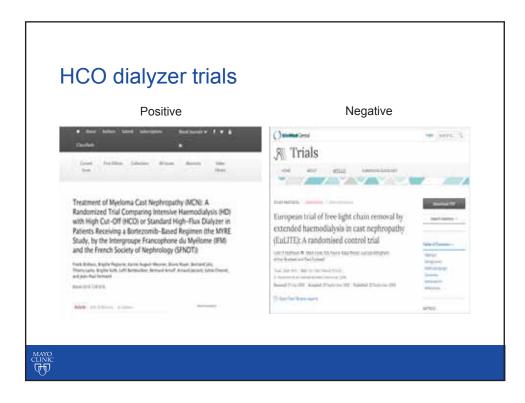

Lancet Oncol 2014; 15: e538-48

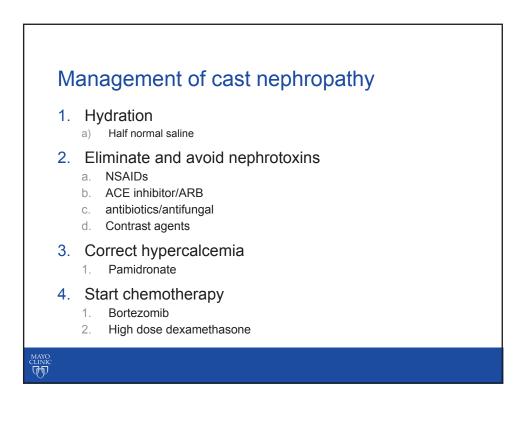










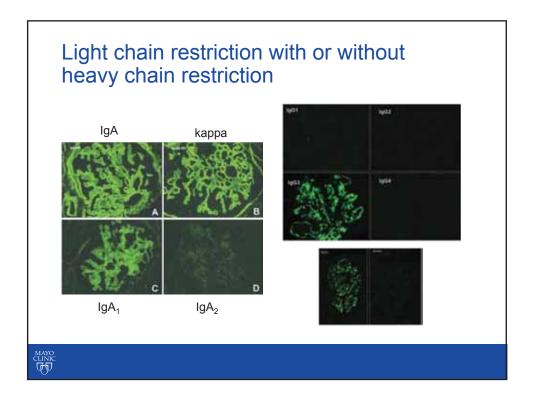


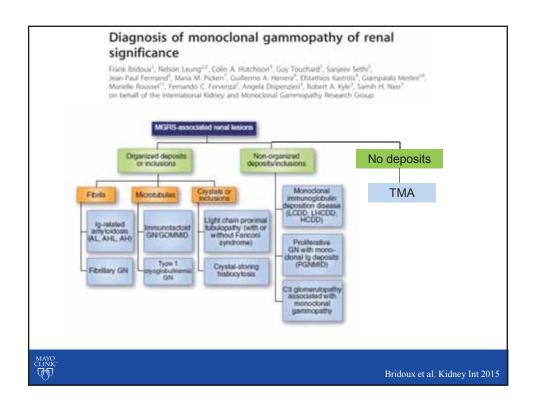
International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma

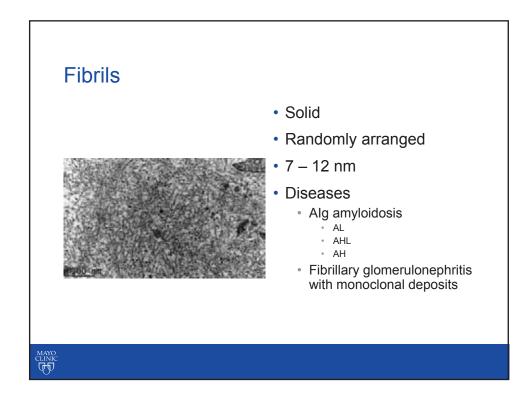
S Vincent Rujkumar, Meletias A Dimopoulas, Antonio Palumbo, Joan Blade, Giampaola Merlini, Mania-Victoria Mateos, Shaji Kumur, Jens Hillengass, Efstathias Kastritis, Paul Richardson, Ola Landgern, Bruno Poiva, Angela Dispenzieri, Brendan Weiss, Xavier Let.eu, Sonja Zweegman, Sagar Lonial, Lawra Rosinol, Elena Zamagni, Sundar Jagannath, Orhan Sezer, Sigurdur Y Kristinsson, Jo Caers, Saad 2 Usmani, Juan Jasé Labuerta, Hans Erik Johnsen, Meral Beksac, Michele Cavo, Hartmut Goldschmidt, Evangelas Terpos, Robert A Kyle, Kenneth C Anderson, Brion G M Durie, Jesus F San Miguel

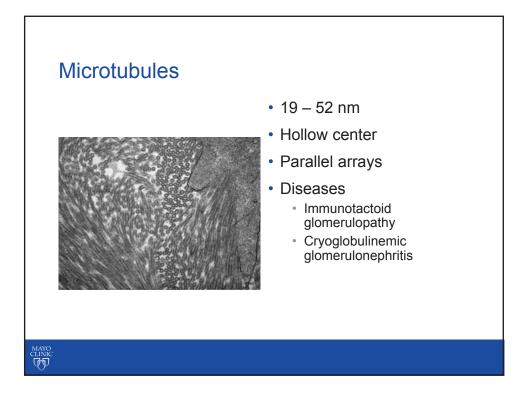
Although other forms of renal damage (eg, AL amyloidosis, monoclonal immunoglobulin deposition disease, lightchain Fanconi syndrome, monoclonal gammopathyassociated membranoproliferative glomerulonephritis) can occur in multiple myeloma, this association is not characteristic of multiple myeloma and can be seen with other types of plasma cell dyscrasias (eg. MGUS) or lymphoproliferative disorders. Although they can occur in conjunction with multiple myeloma, in most patients they occur independently without evidence of other myelomadefining events. For this reason, these renal disorders are not regarded as myeloma-defining events, and should not lead to multiple myeloma diagnosis, unless they meet criteria for multiple myeloma as listed in the panel. These entities represent unique disease states with clearly defined pathological features, diagnostic criteria, prognosis, and therapy. Some investigators have collectively referred to these disorders under the term monoclonal gammopathy Lancet Oncol 2014: 15: e518-48 of renal significance.10 Other causes of acute and chronic

MAYO CLÍNIC

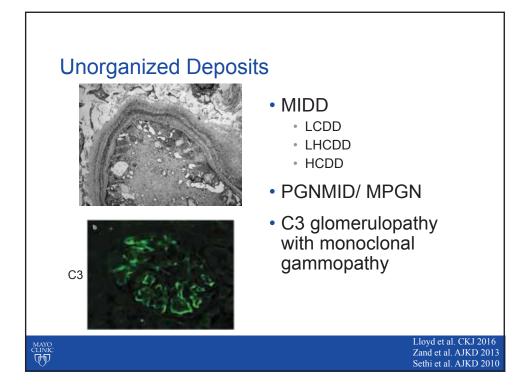


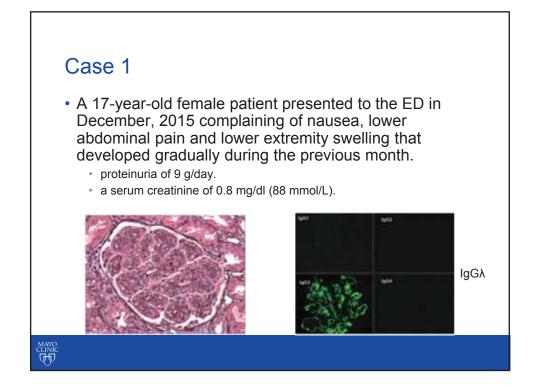

	/IGRS)				
	MGUS		SMM		MM
M-spike	< 3 g/dL		\geq 3 g/dL		\geq 3 g/dL
Bone Marrow PC	< 10%		≥ 10%		≥ 10%
Hypercalcemia (C)	absent	,	absent		+/-
Renal impairment (R)*	absent	\checkmark	absent	\checkmark	+/-
Anemia (A)	absent	·	absent		+/-
Lytic lesions (B)	absent		absent		+/-
Free light chain ratio	<100		<100		>100
Bone marrow plasma ce	lls < 60%		< 60%		> 60%
Bone lesion on MRI	≤ 1		≤ 1		> 1
Cast nephropathy	Observe	0	bserve/Clin t	trial	Treat

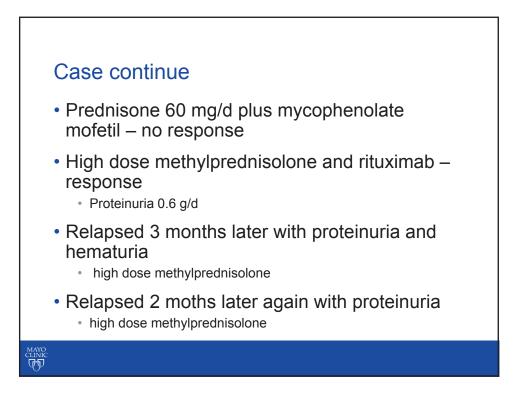

MGRS

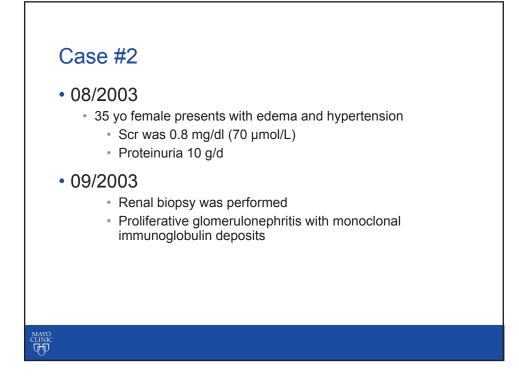

• A hematologic condition that produces nephrotoxic monoclonal immunoglobulin or fragment which do not meet criteria for multiple myeloma, malignant lymphoma, chronic lymphocytic leukemia

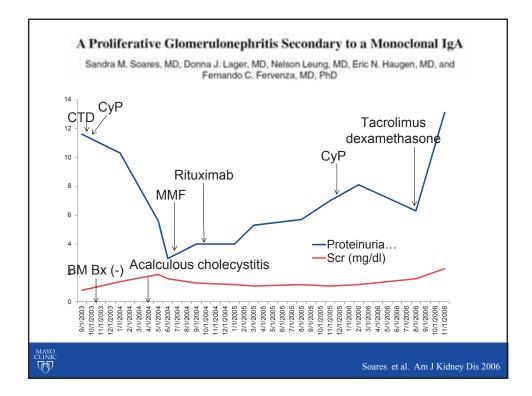
MAYO CLINIC

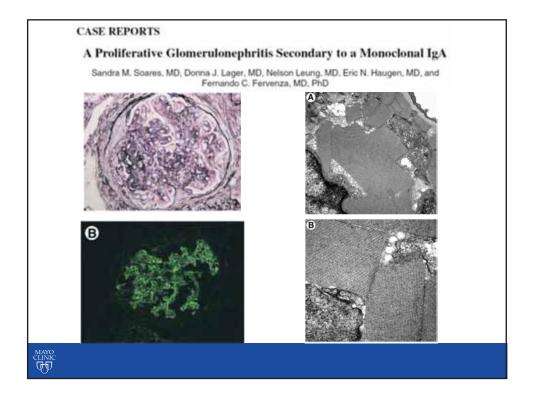


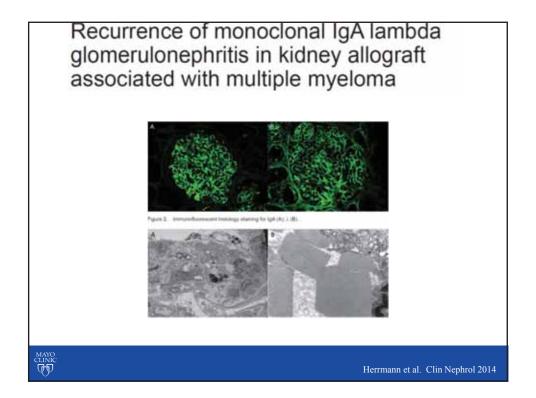


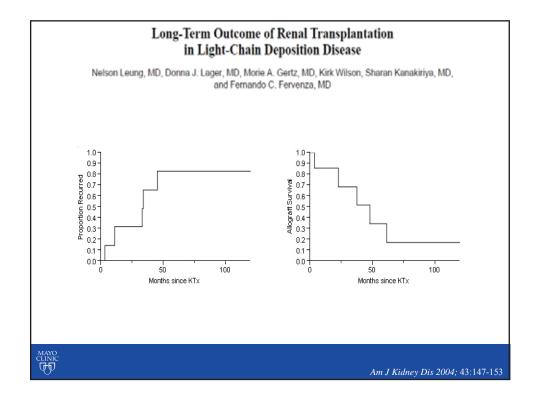


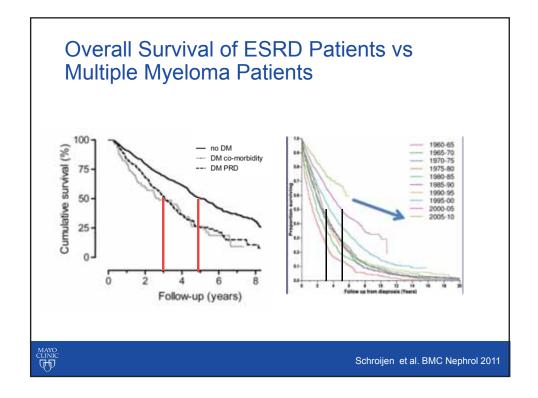


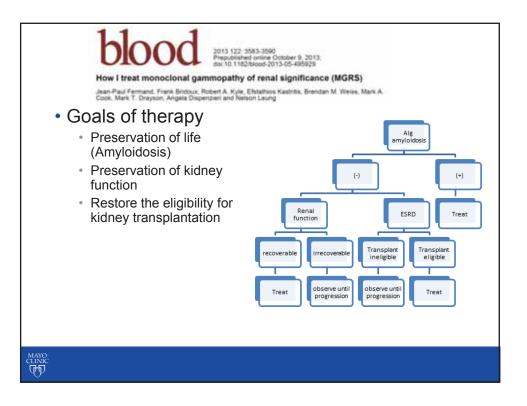

<section-header><section-header><text><list-item><list-item><list-item>



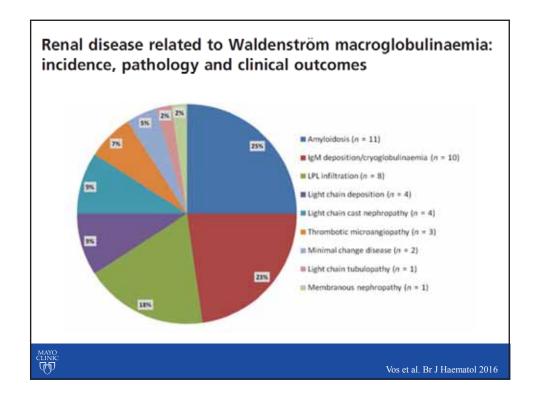








Fernando G. Cosio,* an				
	Patient 1	Pataent 2	Tailout 3	Farinet 4
Age at transplant Kidney source HLA mismatch Percent PRA*	37 Living-unrelated denor 4 of 6 HLA antigem 1% for class I 13% for class I	42 Decrased down 0 of 6 BLA antigens 0% for class I 0% for class II	25 Liviog-related donor 2 of 6 HLA antigens 0% for class 1 0% for class 1	40 Living-annelated dosor 4 of s HLA arrigens 0% for class II 1% for class II
Maintenance immunosuppressive toppressive Time from transplant to diagnosis of	FICSO/PRED/MMF	FK506/PRED/Mytortic	FK506/PRED/MMF	FK506/PRED/MMF
Reseting service disease Reseting service creativities (ing/dl) Parameters at the time of first biopsy showing recurrence	1.9	12	1.4	0.9
serum creatinine (ng/dl) 24-hour utine protein serum albumin	2.8 0.7%0 3.5	3.7 7.4 2.0	4.6 5.8 3	1.2 0.061 4.4
Early rec	currence is a m	ajor obstacle fo	r kidney transpl	antation

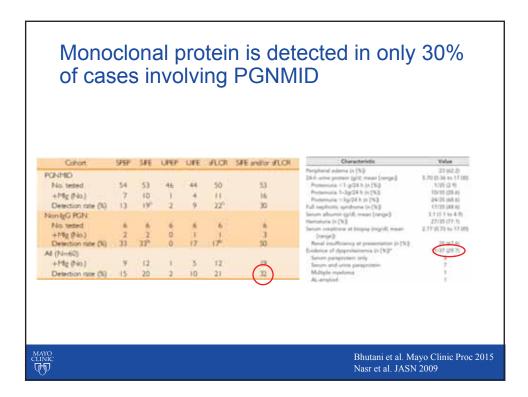


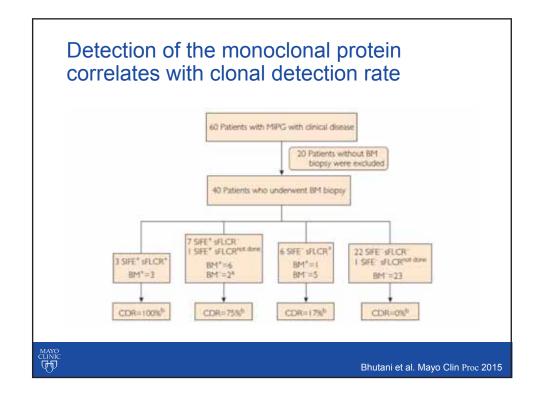
٦

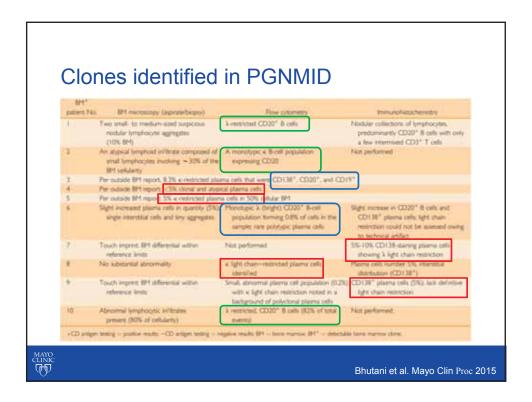
Paraprotein-associated renal lesions	
Myeloma cast nephropathy	62 (33)
Monoclonal immunoglobulin	41 (22)
deposition disease	ALCON L. L.
Amyloidosis	40 (21)
Fibrillary glomerulonephritis	2 (1)
Immunotactoid glomerulopathy	1 (0.5)
Light chain proximal tubulopathy	1 (0.5)
Interstitial infiltration by malignant	2(1)
plasma cells	10 1 10 10

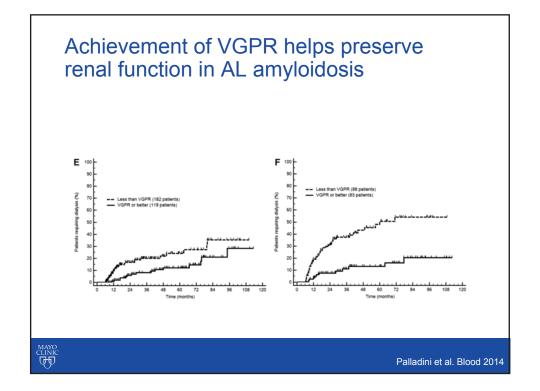
Г

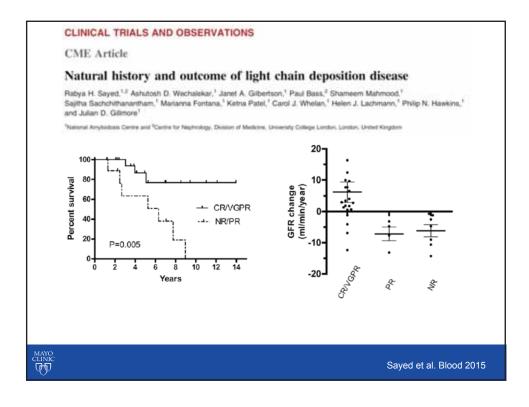
Renal complications in chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis: the Mayo Clinic experience

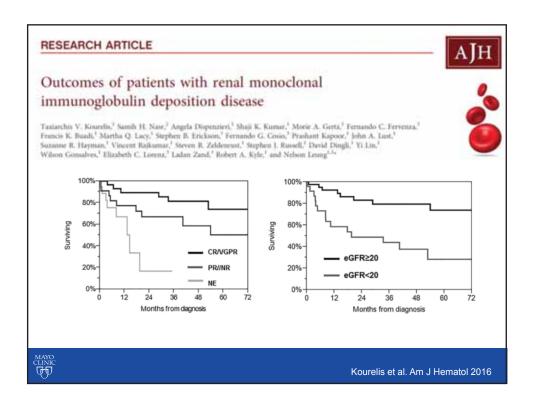

Paolo Strati, Samih H. Nasr, Nelson Leung, Curtis A. Hanson, Kari G. Chaffee, Susan M. Schwager, Sara J. Achenbach, Timothy G. Call, Sameer A. Parikh, Wei Ding, Neil E. Kay, and Tait D. Shanafelt

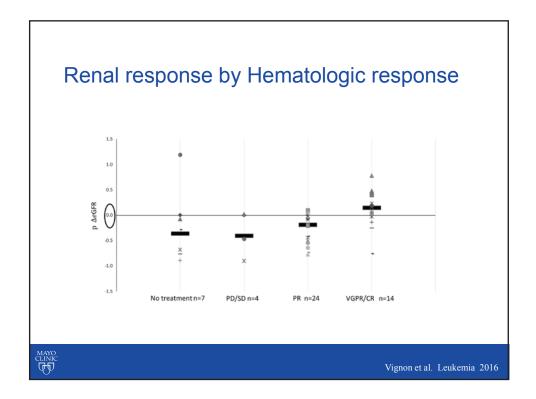

	Manhar (1)	Co-misted CLL infitiation a (%)	Therapy prior to biopsy # (%)
Related to chronic lymphocytic leukemia			
Membratoproliferative glomenalsneplaritis	39 (25)	6/10 (40)	山市谷(市)
CLL inditister as primary eticlogy	6.(13)	NA	46.(67)
Mininal change disease	5 (10)	Q2 (0)	15 (20)
Acute interstitial nephritin	4.09	34 (0)	14(5)
Anytoidusis	3-(T)	10 (33)	- 93 (0)
Light chain cast neghropathy	3 (1)	\$\$ (ii)	-85 (R)
Membrarous glomers/osephritis	2 (4)	3/2 (100)	07(0)
Metasgial proliferative planarrahourphritis (aisclassified)	2(6)	12(56)	01101
Indirectly related to chronic lymphocytic leukemia			
Threabatic microangripathy	6(12)	26 (33)	56 (03)
Administrate acute interstitial septentia	1.(2)	01(0)	VI (100)
Infection-related CGN	1(2)	61(0)	1/1 (100)
p-ANCA-associated panci-immune CGN	3.(2)	01(9)	3/1 (100)
Unrelated to chronic lymphoxytic leakentia			
Diabetic giomeruloscierosis	2(0)	12.000	92(0)
Obesity related local segmental glomeraloiclennia	2(0)	02(0)	62(0)
Hypertennion-related nephroscleronia	1 (2)	A2 (0)	97 (8)


Treatment of MGRS 1. Make the diagnosis of MGRS related disease 2. Identify the clone MAYO CLINIC


Sensitivity of monoclonal protein tests in monoclonal gammopathies

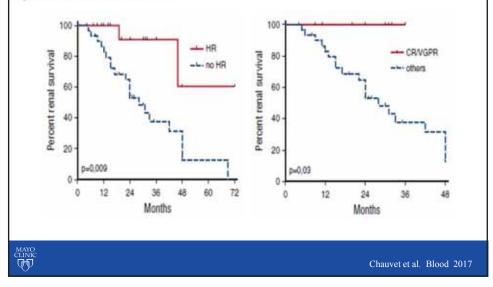

		All 5 tests	Serum PEL and IFE: uniter IFE	Serum PEL, IFE, and FLC	Serum PEL and FLC	Serum	PEL	FLC
Diagrosia, a								
AE	1877	1851	1821	1828	1720	1632	1482	1395
MM	467	457	461	467	467	.841	409	452.
Macroglobaliremsa	26	26	26	26	26	26	26	19
SMM	131	191	191	191	190	188	180	155
MG05	524	524	524	509	-465	486	429	222
Plasmacytoma	-79	26	36	26	25	21	21	- 16
POEMS	31	. 30	30	30	23	30	23	3
Extramedulary plasmacytuma	10	2	2	1	11	1	1	1
Primary AL	581	570	547	564	559	429	383	513
LCTO	18	15	34	14	14	10	10	- 14
Diagrosis, %								
Ait		98.6	97.0	97.4	. 943	87.0	79.0	24.
MM		100.0	96.7	100.0	100.0	94.4	87.6	. 963
Matroglobalinenia		100.0	100.0	100.0	100.0	100.0	100.0	23.5
SAIM		100.0	100.0	100.0	99.5	98.4	94.2	81.
MOUS		100.0	100.0	97.1	88.7	92.8	81.9	42.0
Plasmacytoma		89.7	89.7	89.7	86.2	72.4	72,4	55.
POEMS		96.8	96.8	96.8	24.2	968	74.2	
Extramedultary plasmacytoma		20.0	20.0	10.0	10.0	10.0	10.0	10.0
Primary AL		96.1	94.2	-97.3	96.2	73.8	65.9	.86.
LCDD		81.3	77.8	77.8	77.8	55.6	35.6	77.4

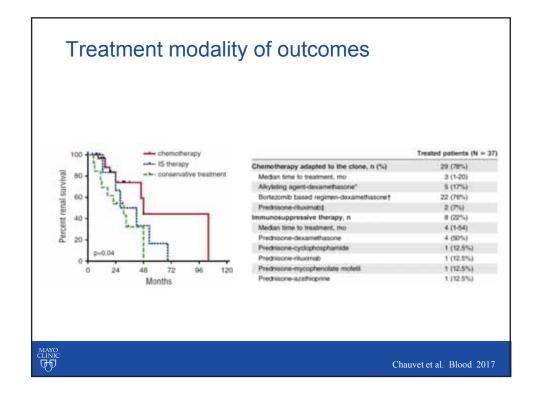


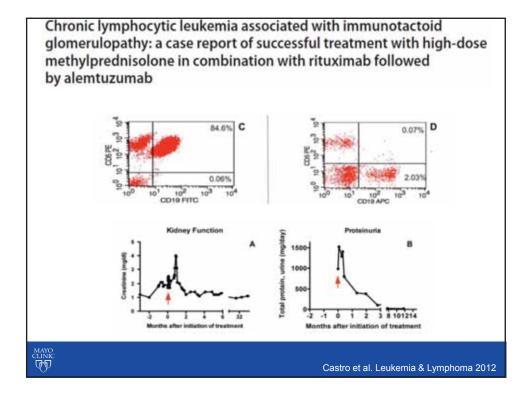

Hematologic response based on front line treatment in MIDD

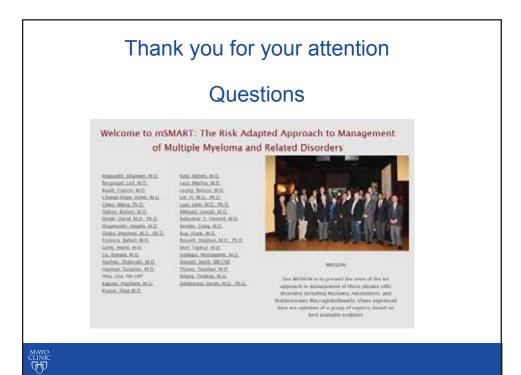
	n	CR	VGPR	PR	NR
Thalidomide based	11	3	2	1	5
Bortezomib based	9	8	0	1	0
Alkylator based	6	3	1	1	1
Melphalan autologous stem cell transplant	4	4	0	0	0
Lenalidomide based	1	0	0	1	0
Steroids alone	1	0	0	0	1
ASCT (any time)	16	13	0	2	0

MAYO CLINIC


Sayed et al. Blood 2015


LCPT	SCT + Chemo (N = 10)	Chemo Alone (N = 12)	None (N = 8)	P - value
Scr (mg/dl)	1.43 (1.45)	2.27 (2.07)	3.11 (1.75)	0.05
Proteinuria	0.85 (0.80)	1.56 (1.59)	1.96 (1.92)	0.05
Hem Response				0.12
CR	20%	25%	0%	0.39
VGPR	10%	0%	0%	0.62
PR	20%	0%	12.5%	0.35
SD	50%	75%	87.5%	0.24
Renal Response				0.07
Improved	40%	25%	14.3%	
Stable	60%	41.7%	57.1%	
Progression	0%	33.3%	0%	
ESRD	0%	0%	28.6%	
Death	0%	33%	37.5%	0.12
			Stokes	s et al. JASN 2




Treatment of B-cell disorder improves renal outcome of patients with monoclonal gammopathy-associated C3 glomerulopathy

Sophie Chauvet,¹⁻³ Véronique Frémeaux-Bacchi²⁻⁴ Florent Petitprez,⁵ Alexandre Karras,¹ Laurent Daniel,⁶ Stéphane Burtey,⁷ Gabriel Choukroun,⁶ Yahsou Delmas,⁹ Dominique Guerrot,¹⁰ Amaud François,¹¹ Moglie Le Quintrec,¹² Vincent Javaugue,^{13,14} David Ribes,¹⁵ Laurence Vrigneaud,¹⁶ Bertrand Amulf,¹⁷ Jean Michel Goujon,^{14,18} Pierre Ronco,¹⁹ Guy Touchard,^{13,14} and Frank Bridoux^{13,14}

Towards Risk Adapted Induction Therapy for Transplant-eligible Myeloma Patients

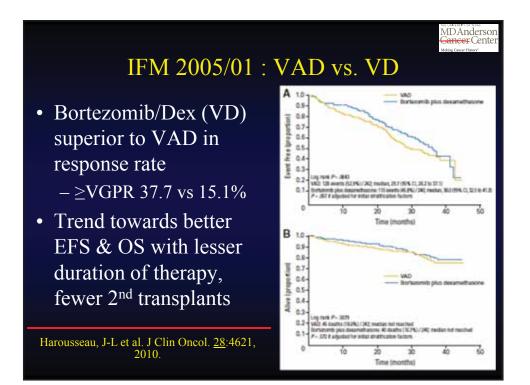
Robert Z. Orlowski, Ph.D., M.D.

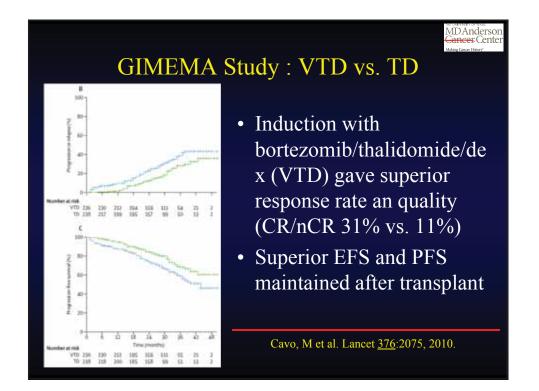
Florence Maude Thomas Cancer Research Professor

Chair, ad interim, Department of Lymphoma/Myeloma

Principal Investigator, MD Anderson SPORE in Multiple Myeloma and SCOR in High-risk Plasma Cell Dyacrasias

Chair, SWOG Myeloma Committee


THE UNIVERSITY OF TEXAS



MDAnderson Cancer Center Making Cancer History*

NCCN Guidelines
Preferred Regimens • Bortezomib/lenalidomide ⁵ /dexamethasone (category 1) • Bortezomib/cyclophosphamide/dexamethasone ⁶ <u>Other Recommended Regimens</u> • Bortezomib/doxorubicin/dexamethasone (category 1) • Carfilzomib ^{7,8} /lenalidomide ⁵ /dexamethasone (category 2B) <u>Useful In Certain Circumstances</u> • Bortezomib/dexamethasone (category 1) ⁹ • Bortezomib/thalidomide/dexamethasone (category 1) • Lenalidomide ⁵ /dexamethasone (category 1) ⁹ • Dexamethasone/thalidomide/cisplatin/doxorubicin/cyclophosphamide/etoposide/bortezomib (VTD-PACE)
https://www.ncen.org; Version 2.2018

MDAnderson Cancer Center

Value of Bortezomib in Induction

• Meta-analysis of IFM 2005-01 (Vd vs. VAD), HOVON-65/GMMG-HD4 (PAD vs. VAD), PETHEMA GEM05MENOS65 (VTd vs. TD)

		duction (n					Nonbortezomib-Based Induction (n = 772)				
Response	No.	%	95% CI	No.	%	96% CI	OR	95% CI*	Pt		
Postinduction											
CR	105	14	11 to 16	32	4	3 to 6	3.92	2.57 to 6.00	< .001		
nCR	70	9	7 to 11	31	4	3 to 6	-		-		
CR plus nCR	175	23	20 to 26	63	8	6 to 10	3.45	2.52 to 4.72	< .001		
VGPR	187	24	21 to 27	76	10	8 to 12	-				
CR plus nCR plus VGPR#	362	47	43 to 50	139	18	15 to 21	4.03	3.19 to 5.08	< .001		
PR	284	37	33 to 40	341	44	41 to 48	-		-		
ORR (≥ PR)	646	83	81 to 86	480	62	59 to 66	3.05	2.40 to 3.87	< .001		
MR	35	5	3 to 6	109	14	12 to 17	-		-		
SD	29	4	3 to 5	76	10	8 to 12	-		-		
PD	24	3	2 to 5	55	7	5 to 9	-		-		
Not evaluable	38	5	3 to 7	50	6	5 to 8	-		-		

Sonneveld, P et al. J Clin Oncol. <u>31</u>:3279, 2013.

						ib based	A	zomib b	
Group All patients	Odds Ratio	95% Cl 1.64 to 2.56		772	Respons 182	24	775	298	38
	2.05	1.64 to 2.56	1	112	182	24	115	298	38
Ago, years < 55	2.23	1.55 to 3.22		302	65	22	296	111	38
≥ 55	1.94	1.47 to 2.58	H H	470	117	25	479	187	39
Sex			1						
Male	1.97	1.46 to 2.64	H	438	105	24	462	175	38
Female	2.17	1.54 to 3.05		334	77	23	313	123	39
ISS staging			1						
	1.58 2.85	1.12 to 2.23 1.90 to 4.28		289 252	92 47	32	288 283	121	42 39
	2.05	1.90 to 4.28		191	36	19	168	58	35
Cytogenetics classific									
High risk	2.44	1.72 to 3.46		319	70	22	308	126	41
Standard risk	1.67	1.20 10 2.31	H	378	89	24	372	124	33
Creatinine clearance,	mU/min		1						
< 60	2.01	1.22 to 3.31		160	37	23	153	58	38
≥ 60	2.08	1.62 to 2.67	Her	602	142	24	605	235	39
		0.2 0.5	1 2 3	10 2	0				
r			-						
Favors non-bo	rtezomib-base	d treatment	Favors	s bortez	omib-l	based tr	eatm	ent	
-		dds Ratio and					*		

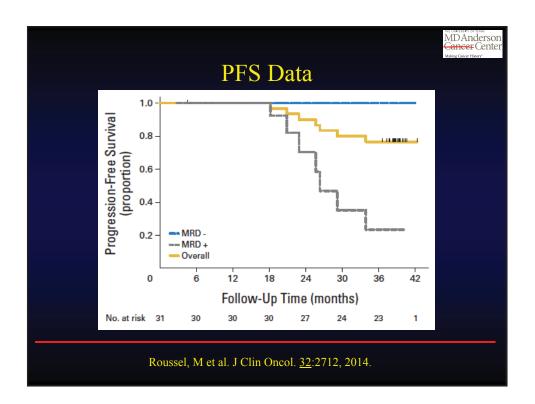
MDAnderson Cancer Center

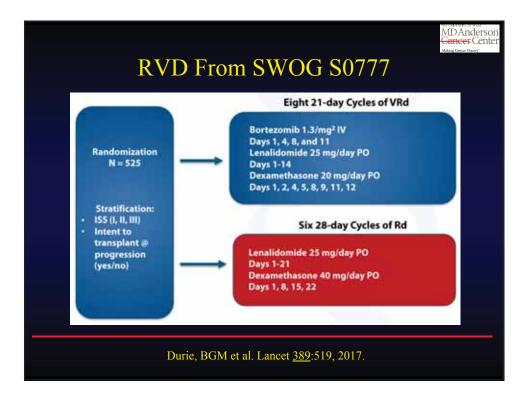
Lenalidomide/Bortezomib/Dex

- Excellent overall response rate and quality
- Does not compromise stem cell collection

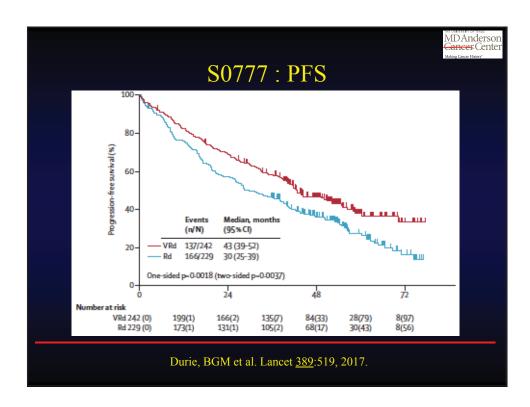
		All patis (N - 6		Ph	ase 2 pop (n - 3	
Response*	n	16	90% CI	n	%	90% CI
CR	19	29	20-39	13	37	24-52
nCR	7	11	5-19	7	20	10-34
VGPR	18	27	18-38	6	17	8-31
PR	22	33	24-44	9	26	14-41
CR + nCR	26	39	29-50	20	57	42.71
CR + nCR + VGPR	44	67	56-76	26	74	59-86
At least PR	66	100	96-100	35	100	92-100

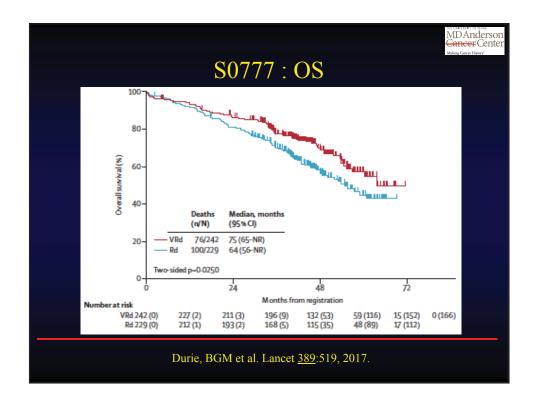
Table 4. Best response to treatment for the treated population and

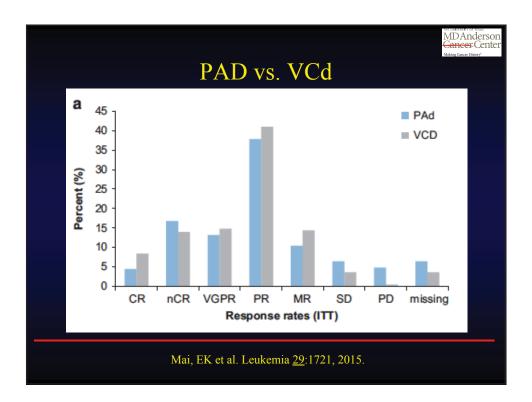

Cl indicates confidence interval; CR, complete response; nCR, near-complete response; PR, partial response; VGPR, very good partial response. "Per EBMT criteria,²⁹ all response categories, including VGPR, required a

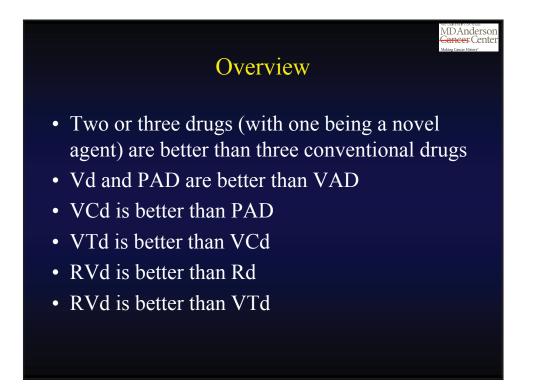

Per EBMT critena,²² all response catagones, including VGPH, required confirmatory assessment at 6 weeks.

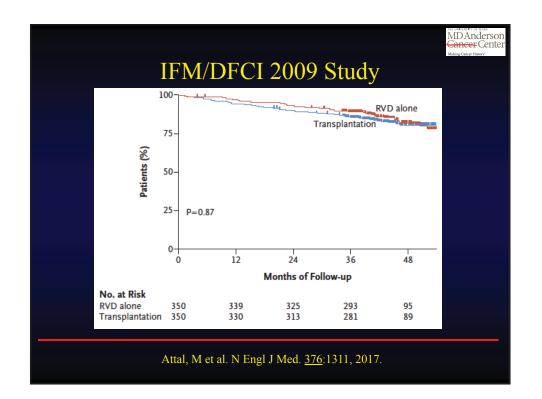
Richardson, PG et al. Blood 116:679, 2010.

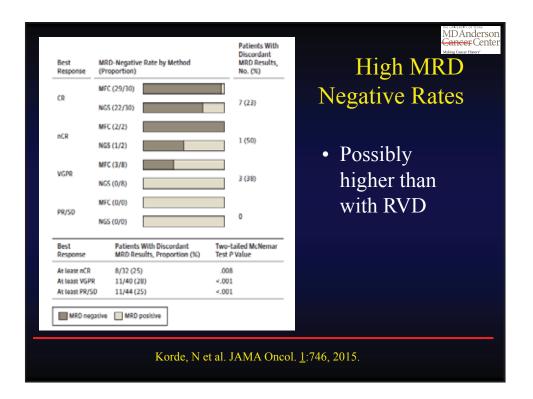

IMF RVD Study									
		CT, RV	/D c	onsoli	idati	on, an	d		
itena	nce								
	uction								
No.	%	No.	%	No.	%	No.	%		
3	10	8	27	12	40	15	48		
4	13	6	20	3	10	3	10		
111	35	7	23	111		8	20		
11		7	23	3	10	5	10		
2	-	2	7	1	3	0			
0	0	0	0	0	0				
	16	14 of 26	54	15 of 26	58	21 of 31	68		
4 of 25	1.0	14	47	10.01.00		10			
4 of 25 7 18	23	14	47	15	50	18	58		
	After Indu Therapy (N No. 3 4 111	ion, ASC tenance Table After Induction Therapy (N - 31) No. % 3 10 4 13 111 35 2 6	ion, ASCT, RV tenance Table 2. Summary of Ret After Induction Therapy (N - 31) No. % No. 3 10 8 4 13 6 111 35 7 11 35 7 2 6 2	ion, ASCT, RVD c tenance Table 2. Summary of Responses After Induction Therapy (N - 31) No. % No. % 3 10 8 27 4 13 6 20 111 35 7 23 2 6 2 7	Asc Atter Induction Therapy (N - 31) Atter ASCT (n - 30)* After Induction Atter ASCT (n - 30)* No. % 3 10 4 13 6 20 3111 35 32 6 33 7 34 13 35 7 30 7 30 7 30 7 3111 35 32 6	$\begin{array}{c c} \text{ion, ASCT, RVD consolidati} \\ \hline \textbf{tenance} \\ \hline \hline \textbf{Table 2. Summary of Responses} \\ \hline \hline \textbf{After Induction} \\ \hline \hline \textbf{Therapy (N = 31)} \\ \hline \hline \textbf{No.} & \% \\ \hline \textbf{No.} & \hline \textbf{No.} &$	$\begin{array}{c c} \text{ion, ASCT, RVD consolidation, and} \\ \hline \text{tenance} \\ \hline \hline \\ \hline $		

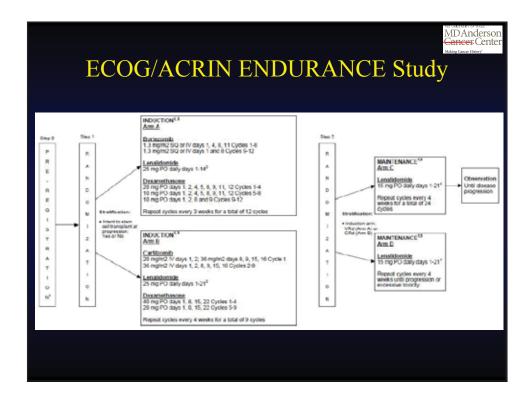

Roussel, M et al. J Clin Oncol. 32:2712, 2014.

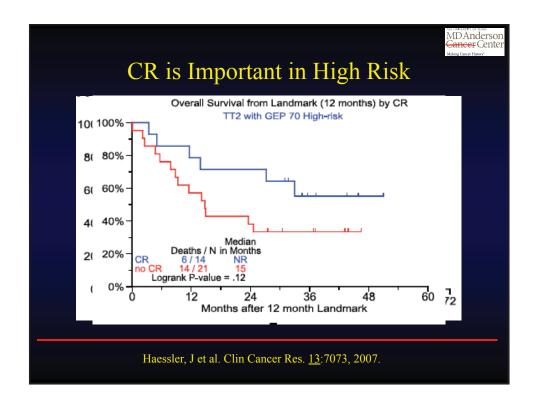


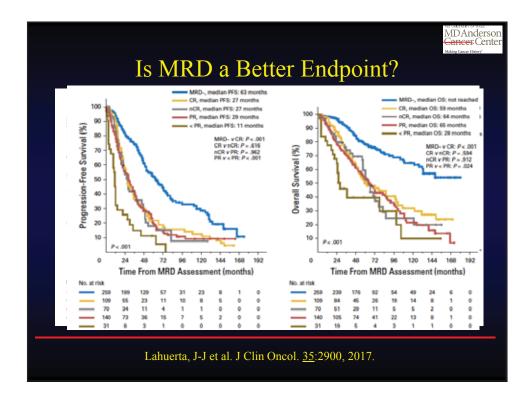

Reen	onse Dat	a	MD Anderson Cancer Cente Miking Cancer History'
Resp	Patients given bortezomib with lenalidomide and dexamethasone (VRd group; n=216)*	Patients given lenalidomide and dexamethasone (Rd group; n=214)*	
Confirmed response	34 (15-7%)	18 (8-4%)	
Very good partial response	60 (27-8%)	50 (23·4%)	
Partial response	82 (38%)	85 (39-7%)	
Overall response rate (partial response or better)	176 (81-5%)	153 (71-5%)	
Stable disease	34 (15:7%)	52 (24·3%)	
Stable disease or better	210 (97-2%)	205 (95-8%)	
Progressive disease or death	6 (2-8%)	9 (4-2%)	
* The p value for differences in the results section provides more deta the response category one level be	ails (unconfirmed respons		

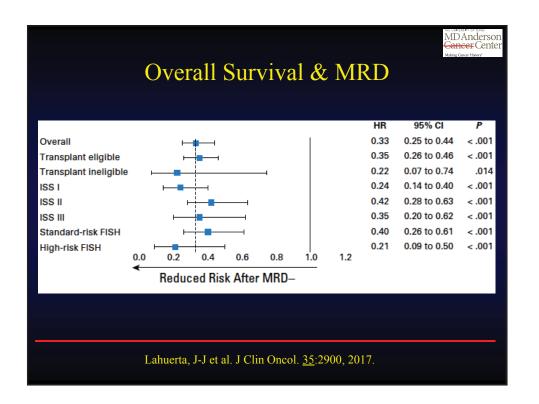


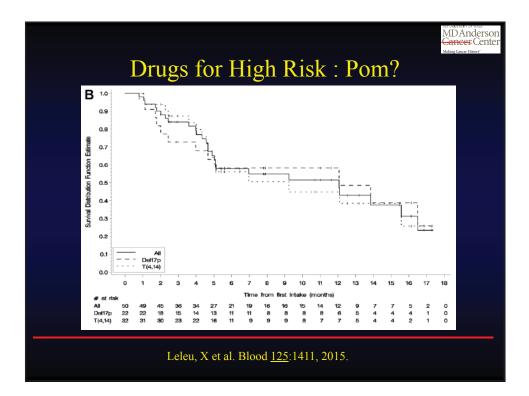


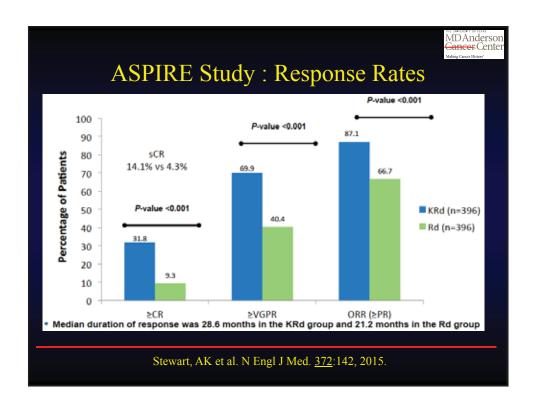

	VTD vs.	VCD	
Table 2. Respo	nse to induction		
	VTD (n = 169)	VCD (n = 169)	P value
Intent to treat			
≥CR	13.0%	8.9%	.22
≥VGPR	66.3%	56.2%	.05
≥PR	92.3%	83.4%	.01
Per protocol	n = 157	n = 154	
≥CR	14.0%	9.1%	.17
≥VGPR	70.7%	60.4%	.05
≥PR	98.7%	90.3%	.001

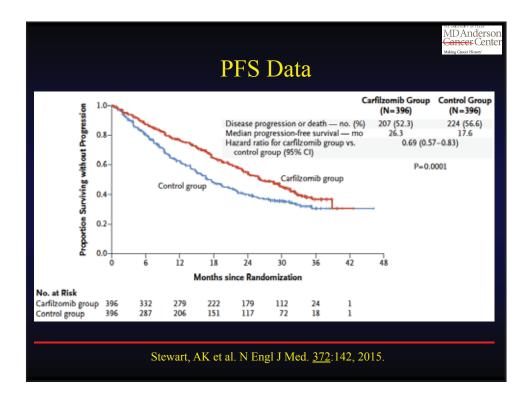


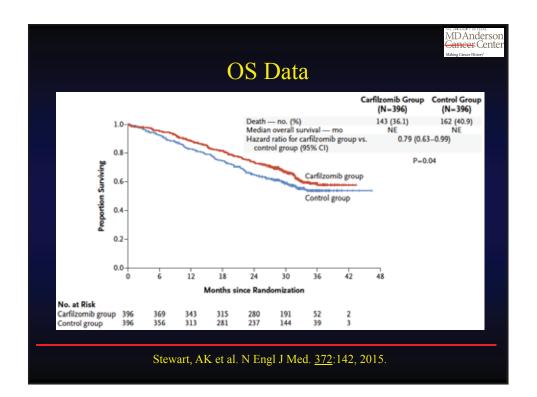


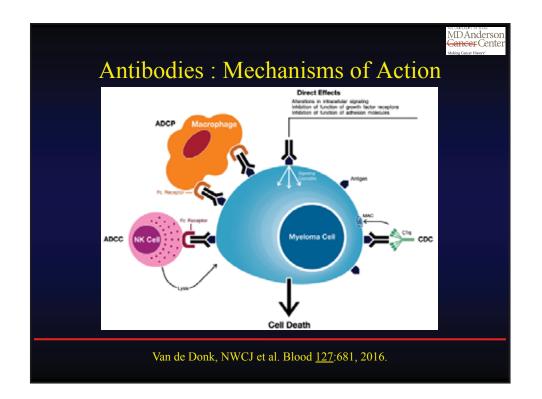

			Response	e, n (%)*		ff protocol)
ansplantation-		≥ PR	≥ VGPR	≥ nCR	sCR	h
eligible and	Carfilzomib dose, mg/m ²					Cycles 25+
eligible patients	20 (n = 4)	4 (100)	4 (100)	3 (75)	1 (25)	- P
	27 (n = 13)	13 (100)	13 (100)	10 (77)	7 (54)	
	36 (n = 36)	35 (97)	26 (72)	20 (55)	14 (39)	
	ISS stage					
	l (n = 21)	21 (100)	16 (76)	12 (57)	7 (33)	
	II (n = 18)	18 (100)	15 (75)	10 (55)	8 (44)	
	III (n = 14)	13 (93)	12 (86)	11 (79)	7 (50)	
	Cytogenetics					Cycles 25+
arfilzomib	Normal/favorable ($n = 34$)†	34 (100)	26 (76)	20 (59)	13 (38)	
Treatment days	Unfavorable (n = 17)†	16 (94)	13 (76)	11 (65)	9 (53)	

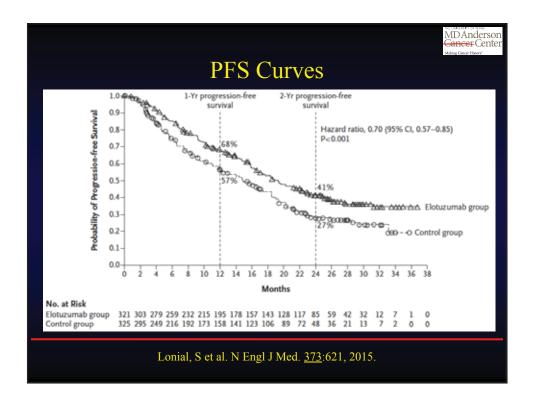






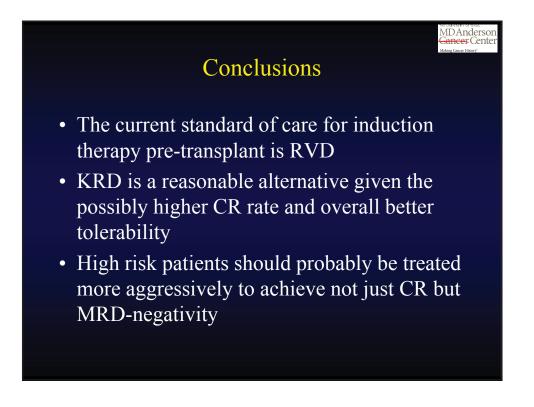


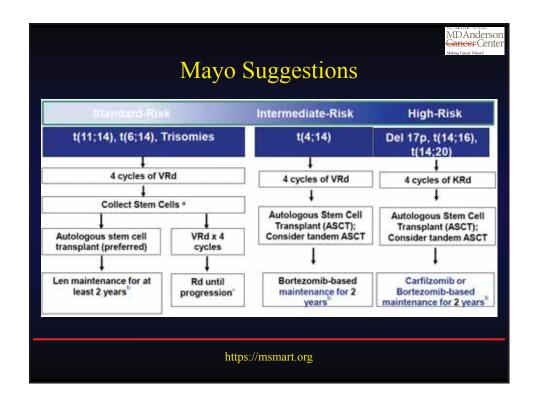


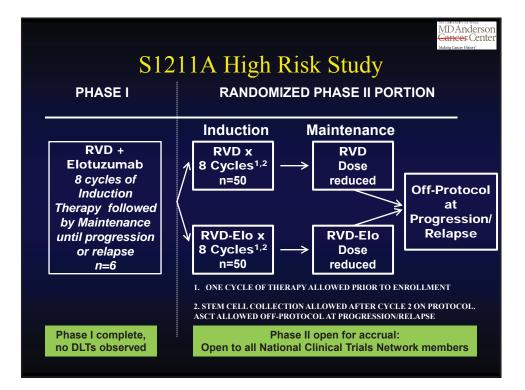


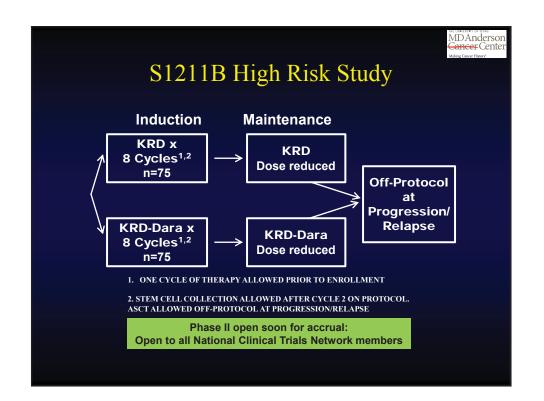
ah Diala		filzomih?	MD Anders Cancer Cen Making Cancer History
gn Kisk	: Cal	mizoinio !	
Carfilzomih	Control	Harard Patio (95% CI)	
		Hazard Ratio (3576 CI)	
396	396	— •—	0.69 (0.57-0.83)
181	164		0.68 (0.51-0.92)
215	232	·•	0.74 (0.58-0.95)
211	188	·•	0.60 (0.46-0.79)
185	208		0.85 (0.65-1.11)
48	52		0.70 (0.43-1.16)
147	170		0.66 (0.48-0.90)
68	71		0.60 (0.36-1.02)
324	319		0.71 (0.58-0.87)
324	319		0.71 (0.58-0.87
wart AK et al N	Engl LM	Ied 372.142 2015	
	2	<u></u>	
	Carfilzomib 79 396 181 215 211 185 48 147 68 324	Carfilzomib Control no. 396 396 396 181 164 215 232 211 188 185 208 48 52 147 170 68 71 324 319	no. 396 i 396 396 i 181 164 i 215 232 i 211 188 i 185 208 i 48 52 i 147 170 i 68 71 i




ELOQUENT2 : T	reatment Respo	nse
Response	Elotuzumab Group (N=321)	Control Group (N=325)
Overall response rate		
Patients with response — no. (%)†	252 (79)	213 (66)
95% CI — %	74-83	60-71
Best overall response — no. (%)		
Complete response (sCR + CR)	14 (4)‡	24 (7)
Very good partial response	91 (28)	67 (21)
Combined response (sCR + CR + VGPR)	105 (33)	91 (28)
Partial response	147 (46)	122 (38)
Minimal response	22 (7)	33 (10)
Stable disease	30 (9)	54 (17)
Progressive disease	8 (2)	8 (2)
Could not be evaluated	9 (3)	17 (5)


Lonial, S et al. N Engl J Med. 373:621, 2015.




	High R	lisk : E	lotuzuma	MDAnderson MDAnderson Center Maing Cover Haver
Mutations del(17p) 1q21 t(4;14)	50 (102) 88 (147) 21 (30)	61 (104) 105 (163) 25 (31)		0.65 (0.45–0.94) 0.75 (0.56–0.99) 0.53 (0.29–0.95)
	Lonial, S et a	al. N Engl J M	1ed. <u>373</u> :621, 2015	



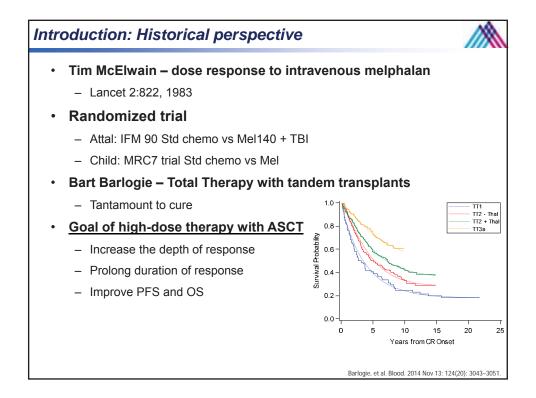
Illustrative Case

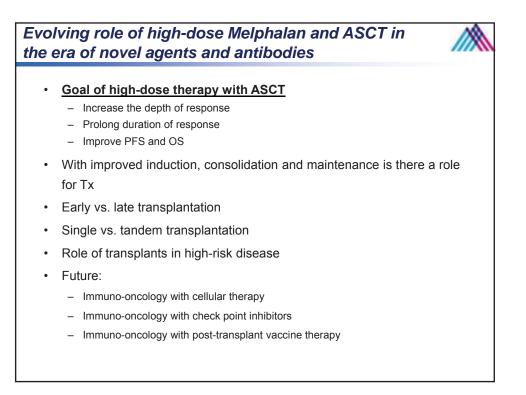
DAnde

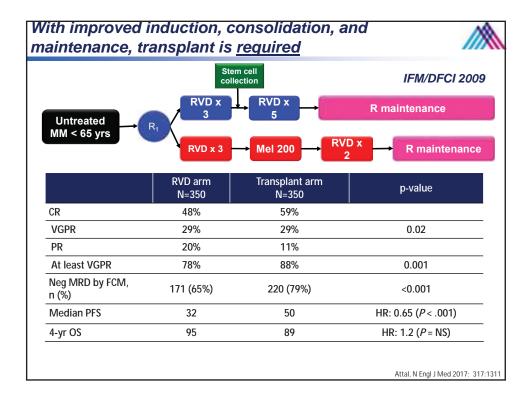
IDAnc

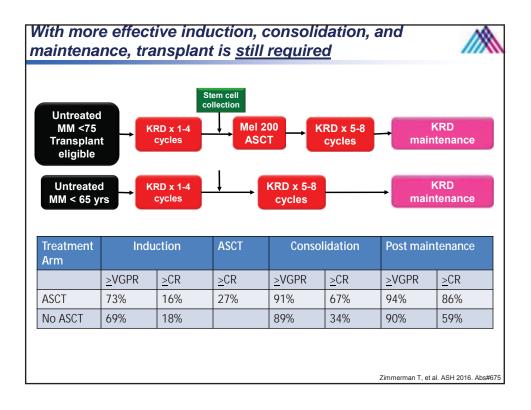
- 69 yo female with a history from 5 years ago of an elevated total protein
- 09/2014 p/w back pain; radiographs negative
 Work-up showed Hgb 8.5, WBC 11.3 (20% plasma cells), BUN 37, Cr 3.3, Ca 11.2
- BM : 90% plasma cells, t(11;14) by FISH
- Serum : 4.0 g/dL IgG kappa paraprotein
- PET scan : Multiple small lytic lesions

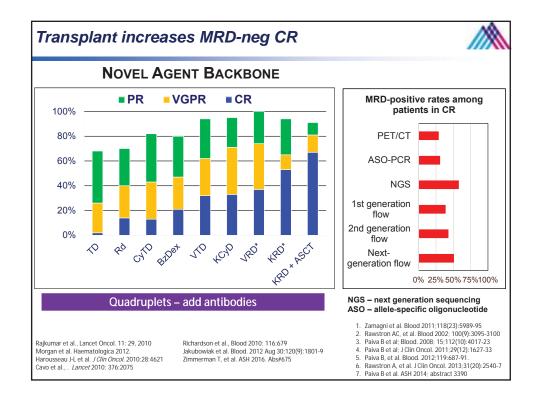
Induction Therapy

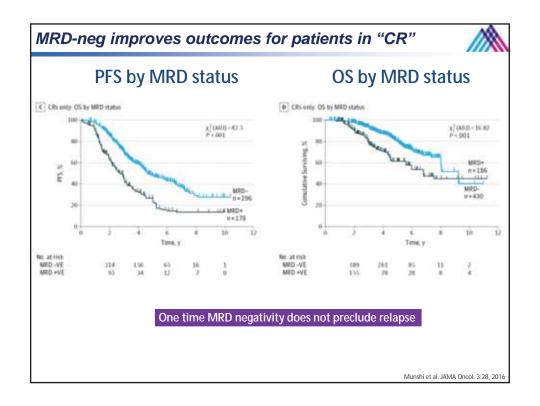

- You would recommend induction therapy with
 - A. VD
 - B. RD
 - C. RVD
 - D. KRD
 - E. CyBorD

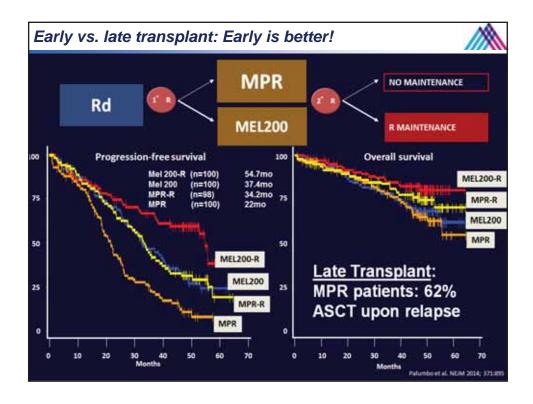

. .

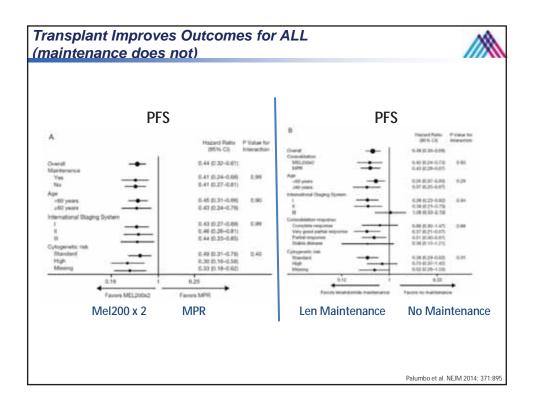

DAnders

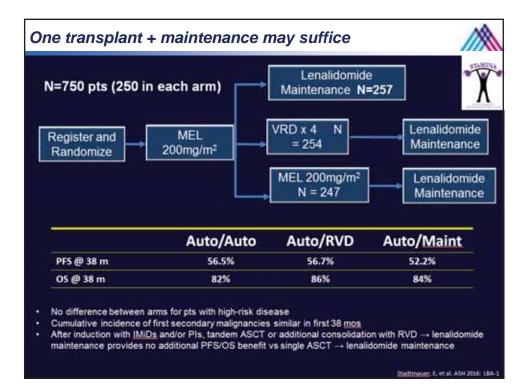

- Further Course
- Induction is given with modified CVD which normalizes her renal function and resolves her circulating plasma cells
- She enrolls on S1211A and is randomized to the RVD-Elo arm, which she starts in 01/2015
- Achieves a VGPR with nadir M-protein of 0.4 in 08/2016
- M-protein slowly rises from there, and increases to 1.0 in 07/2017

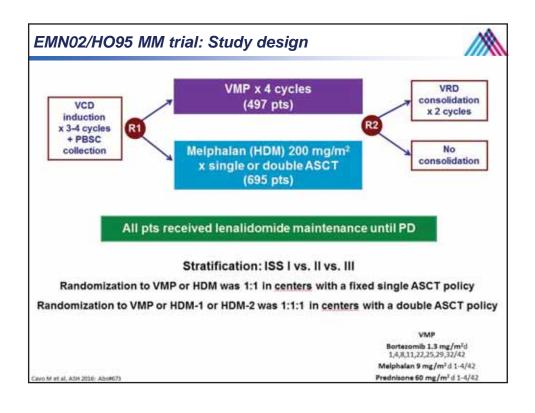


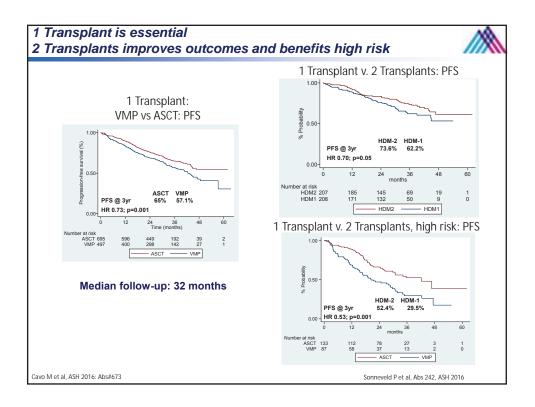


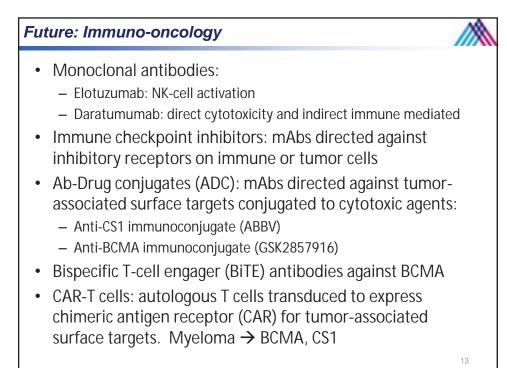


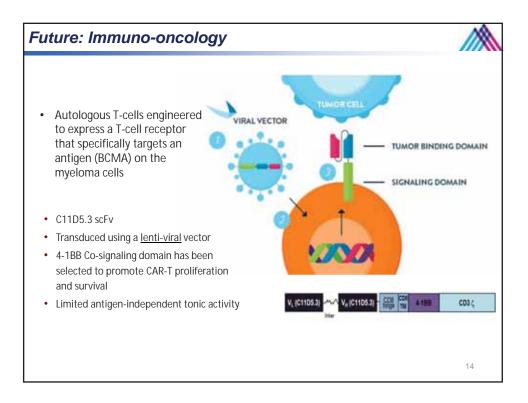


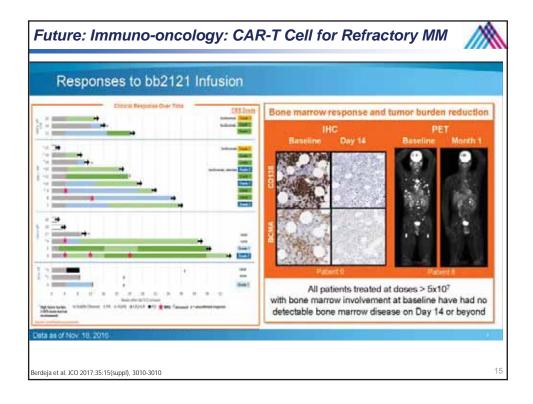

3

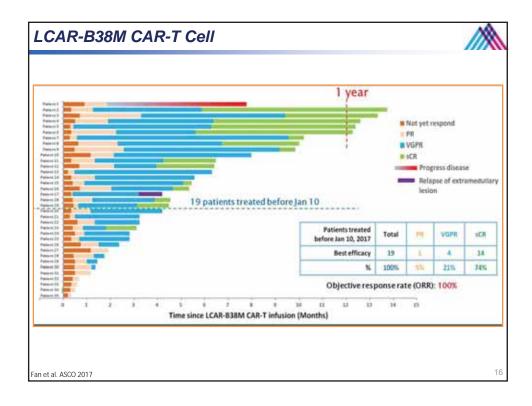


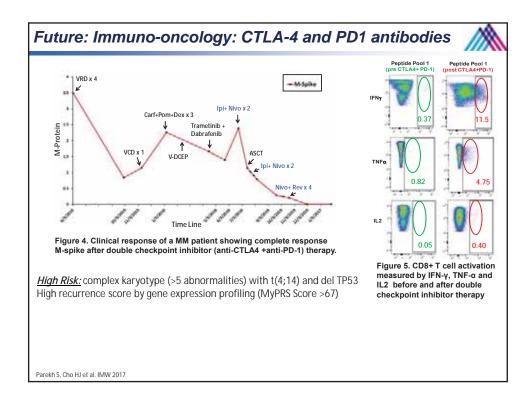


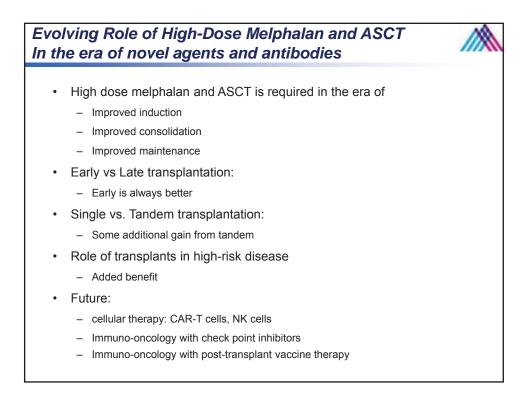

4

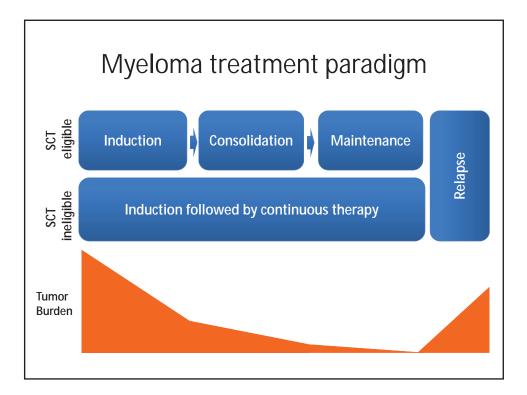












8

	on From Met	je s	
N = 1,218	Continuous Therapy	Fixed Duration of Therapy	Pvalue
1-year landmark anal	ysis		
Median PFS1	32 months	16 months	<0.001
Median PFS2	55 months	40 months	<0.001
4-year OS N = 687	69%	60%	0.003
	Continuous Therapy	Fixed Duration of Therapy	P value
Median second PFS	15 months	15 months	0.313

Post-ASCT Consolidation

Rationale

- Consolidation therapy following autologous stem cell transplant (ASCT) implies a short period of intensive treatment with singleagent or combination therapy.
- Since depth of response is widely accepted as prognostic for overall outcome in MM, this strategy aims to further reduce disease burden following high-dose chemotherapy and stem-cell rescue.

Historical perspective

 Initial efforts at post-transplant consolidation consisted of aggressive attempts to eradicate disease with tandem autologous transplantation, often combined with consolidation cytotoxic chemotherapy.

20 C		splant	S		
		1			
Trial	Ν	ASCT	CR+VGPR (%)	Median PFS (months)	Median O (months)
Attal et al,	399	Single	42	25	48
2003		Tandem	50	30*	58*
Fermand et	007	Single	39	31	49
al, 2003	227	Tandem	37	33	7 3†
Cavo et al,	201	Single	33	23	65
2007	321	Tandem	47*	35*	71
Goldschmid	0/0	Single	NR	23	NYR
t et al, 2005	268	Tandem	NR	29*	NYR
Sonneveld et al, 2007	303	Single	13 (CR only)	27*	50

Engl J Med. 2003;49:2495-502. Fermand JP, et al. Hematol J. 2003;4(Suppl 1):S59. Lazarus, Harry M. and Laughlin, Mary J. Allogeneic Stem Cell Transplantation. Second Edition. Cleveland, OH; mana Press, 2010. Cavo M, et al. J Clin Oncol. 2007;25:2434–2441. http://myeloma.org/pdfs/Sydne/2009_Goldschmidt_P8.pdf. Accessed July 18, 2012. Sonneveld P, et al. Haematologica. 07:92(7):928–935.

Tandem transplant and cytotoxic chemotherapy

Trial	Consolidation	Maintenance	5-yrrrs	5-yr OS
TT1	Mel200 x 2	IFN	28%	58%
(N=231)				
TT2	Mel200 x 2	IFN	42%	65%
(N=668)	DPACE x 4	vs	VS	VS
		IFN + Thal*	56%	68%
TT3a	Mel200 x 2	VDT ^{\$} →	65%	74%
(N=303)	V-DTPACE x	Thal*+Dex		
	2			
*: Thalidomide; ^{\$} : V	elcade, Dexamethasone and Tha	lidomide		

Modern perspective

• With an expanding number of well-tolerated therapies, evaluation of post-transplant short course consolidation therapy is now a more attractive option to study.

Immunomodulatory agent based consolidation therapy

Consolidat on Regimen	Induction Regimen	Comparat or Arm	Duration	Before Consolidat ion	After Consolidat ion	4-yr PFS	4-yr OS
Lenalidom	VAD*	None	2 cycles	≥VGPR&:	≥VGPR&:	43% ^{&}	73%&
ide	(46%)	(All		58%	69%	vs	vs
Attal et al	VD ^{\$}	treated)			P<0.001	22%	75%
N=614	(46%)						

Attal M et al New England Journal of Medicine 366:1782-1791, 2012

Bortezomib based consolidation therapy

 Bortezomi o naieve	None	6 cycles	CR+VGPR:43 %	CR+VGPR: 43%	NR	63.1%
Bortezomi o naieve	Placebo	6 cycles	≥nCR: 20.1% ≥VGPR:39.7 %	≥nCR:45.1 % ≥VGPR:70. 9%	27 m vs 20 m	80% vs 80%

Bortezomib and Thalidomide based consolidation therapy

Consolid ation Regimen	Inductio n Regimen	Compar ator Arm	Duration	Before Consolid ation	After Consolid ation	3yr-PFS	3yr-OS
VTD Cavo et al N=160	VTD X 3	TD N=161	2 cycles	CR: 48.7% ≥VGPR: 86.2%	CR: 60.6% ≥VGPR: 91.9% P=NS	60%	90%
TD Cavo et al N=161	TD X 3	VTD N=160	2 cycles	CR: 40.4% ≥VGPR: 81.4%	CR: 46.6% ≥VGPR: 88.2% P=NS	48%	88%
VTD Leleu et al N=121	VTD	No Consolid ation N=96	2 cycles	CR:33% ≥VGPR: 43%	CR:52% ≥VGPR: 31% P<0.001	NR	NR vs 22m

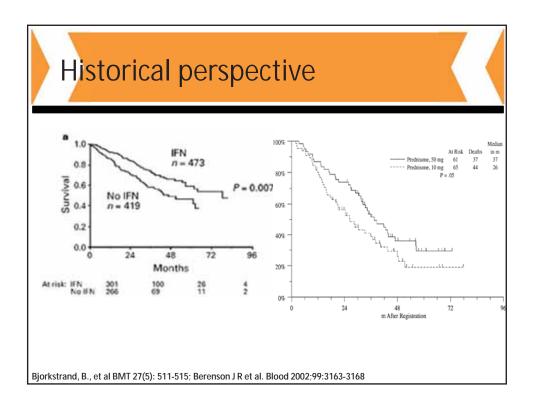
Bortezomib and Lenalidomide based consolidation therapy

Consolidat		Comparat	Duration	Before	After	PFS	OS
ion	Regimen	or Arm		Consolidat	Consolidat		
Regimen				ion	ion		
RVD	RVD	None	2 cycles	CR: 47%	CR: 50%	77%	100%
Roussel et				≥VGPR:	≥VGPR:	3-yr	3-yr
al				70%	87%		
N=31							
RVD	RVD	None	3 years	sCR ≈20%	sCR: 51%	32m	93%
Nooka				≥VGPR≈8	≥VGPR:		3-yr
				5%	96%		
RVD	RVD	No	2 cycles	≥VGPR:7	≥VGPR:	34m	81%
Moreau et		transplant		3%	81%	vs	vs
al						43m	83%
							4-yr

Carfilzomib and Immunomodulatory agent based consolidation therapy

Consolidation Regimen	Induction Regimen	Comparat or Arm	Duratio n		After Consolidat ion	PFS	OS
KTd	KTd	None	4 cycles	CR: 33%	CR: 63%	60%	90%
Sonneveld et al				≥VGPR: 76%	≥VGPR: 89%	3-yr	3-yr
N=91 KRd	KRd	None	4 cycles	≥CR:27%	≥CR:77%	99%	100%
Jakubowiak et al	1111	- tone	. cycles	≥sCR:22 %	≥sCR:70 %	11m	11m
N=71							

Sonneveld P et al Blood 125:449-456, 2015; Jakubowiak A et al Haematologica. 2015;100(Suppl 1):1-800., 2015


	0 10	n and M	IRD		
oncom	aatioi				
					-
Consolidatio	Induction	Comparator	Duration	Before	After
n Regimen	Regimen	Arm		Consolidatio	Consolidatio
				n	n
VTD	VAD	None	4 cycles	CR: 15%	CR: 49%
Ladetto et al				MRD-: 3%	MRD-:18%
N=39				MRD: 4.15	MRD: 10.09
				log reduction	log reduction
					(PCR)
VRD	VRD	None	2 cycles	MRD: 54%	MRD: 58%
Roussel et al				negative	negative (7
					color
					Flowcytomet
					ry)
		None	4 cycles	MRD: 79%	MRD: 90%
KRd Jakubowiak	KRd	1 tone			

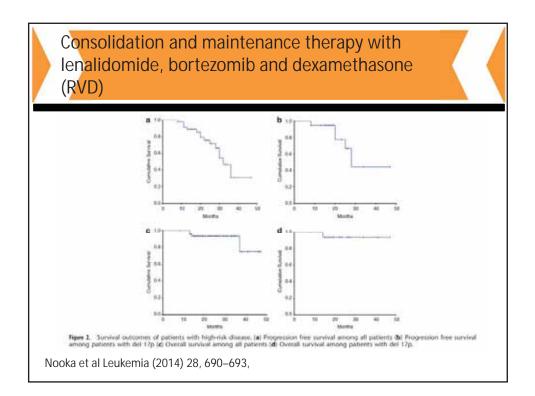
Post-ASCT Maintenance

Rationale

- Multiple phase 3 trials indicate that maintenance or continuous therapy prolongs PFS¹⁻⁶
- Several trials also show OS advantage^{1,4,5}
- Meta-analyses suggest continuous therapy produces better PFS1, PFS2, second PFS, and OS^{7,8}

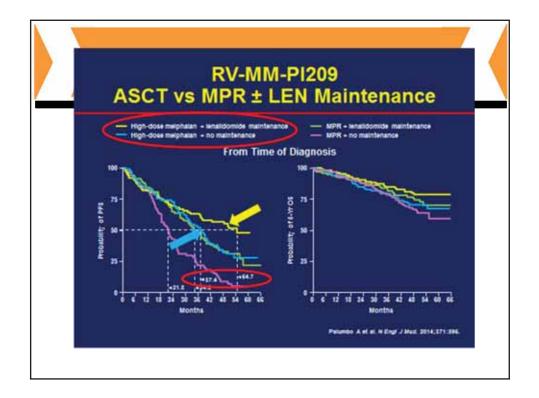
McCarthy PL et al. N Engl J Med. 2012;366:1770. 2. Attal M et al. N Engl J Med. 2012;366:1782.
 3. Palumbo A et al. N Engl J Med. 2012;366:1759. 4. Attal M et al. Blood. 2006;108:3289.
 5. Spencer A et al. J Clin Oncol. 2009;27:1788. 6. Sonneveld P et al. J Clin Oncol. 2012;30:2946.
 7. Ludwig H et al. Blood. 2012;119:3003. 8. Palumbo A et al. J Clin Oncol. 2014;32. Abstract

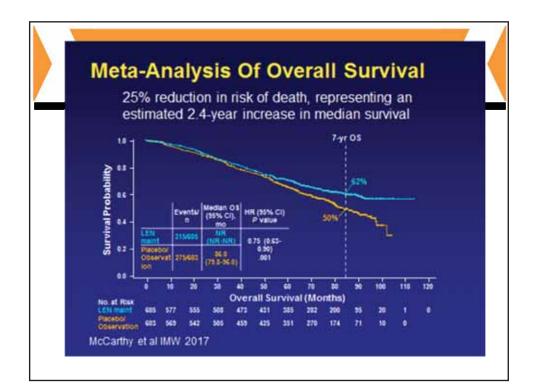
Meta-analysis of Thalidomide Maintenance

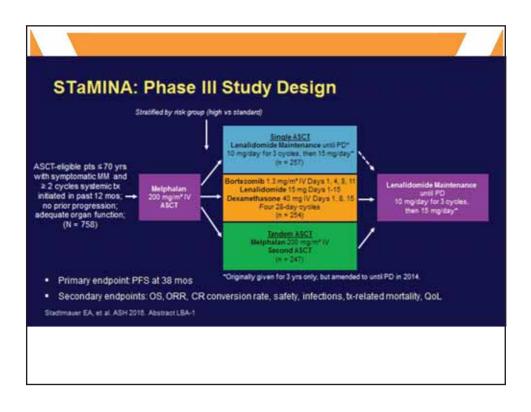

	umber of Patients	Odds ratio (95% Cl)	P-value fo interaction
IFM-9902	597 —	0.61 (0.33-1.13)	.040
Spencer et al.	243 —	0.43 (0.21-0.91)	.004
Total Therapy 2	668 -	0.82 (0.60-1.12)	.090
Ludwig et al.	128	0.93 (0.53-1.66)	.810
Myeloma IX	820 -	0.77 (0.55-1.07)	.040
All Studies	2456	0.75 (0.64-0.87)	<.001
	0 0.25 0.5 0.75 1 Favors Maintenance	1.25 1.5 1.75 2 Favors No Maintenance	

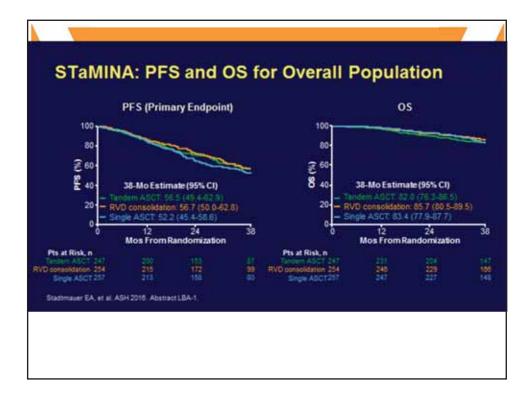
	Pre-ASCT				PFS/TTP onths)		0 (%	S 6)	<i>P</i> Valu
Trial	Regimen	N	# ASCT	Ľ	PBO	<i>P</i> Value	Ľ	РВО	е
Attal et al, 2012 IFM 2005-02	VAD or VD	614	1 or 2	43	22	<0.001	73 at 4- year survival	75 at 4- year survival	NS
McCarthy et al, 2012 CALBG 100104	L 32% V 42% T 16%	460	1	46	27	<0.001	88 at 3- year survival	80 at 3- year survival	<0.0 5

Toxicity with Lenalidomide Maintenance

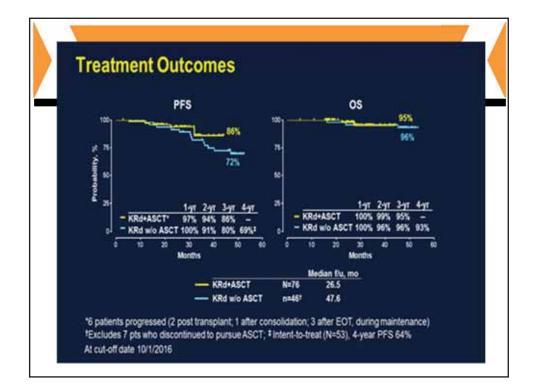

Adverse Event (Grade 3 or 4)	IFM 20	005-02	CAI	_GB
	L	PBO	L	PBO
Neutropenia	51%	18%	45%	15%
Thrombocytopenia	14%	7%	14%	4%
Anemia	3%	2%	5%	<1%
Discontinuation due to AE	27%	15%	10%	1%
Secondary malignancy	N=26 (8%)	N=11 (4%)	N=22 (9.5%)	N=4 (4%)

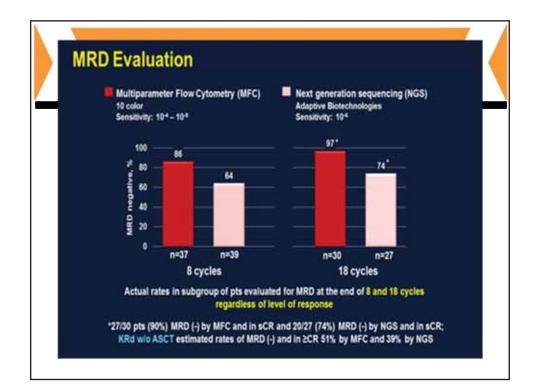

IFM = Intergroupe Francophone du Myelome CALGB = The Cancer and Leukemia Group B Attal M, et al. N Engl J Med. 2012;366(19):1782-91. McCarthy PL, et al. N Engl J Med. 2012;366(19):1770-1781.

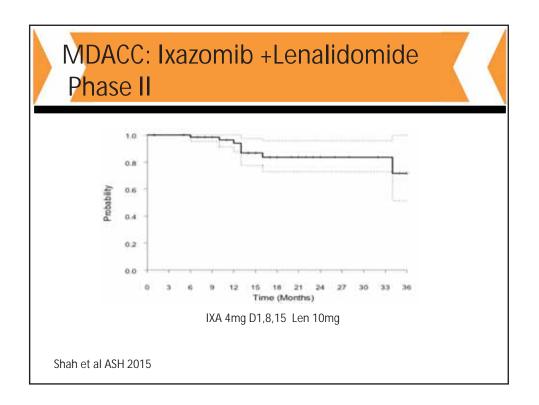

Forest Plots for Phase 3 Lenalidomide Maintenance Trials

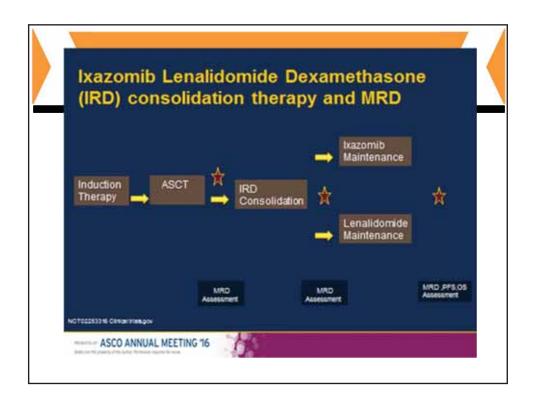

Shares	Lauran		States of States	frida for	The is Registered		CONSTRUCTION OF	
100000 C	111	11721	=	626	Longiture to before		1912222	446
Lange Contraction	101	28121	=	447	Tradicities Induction		LT ATTALLET	4.84
Table of Maniante	in the second se	-	+	- 642	Decesia-mangatament		15111218	476
Hard and Annual Annual	121	部		- 620 4	Cargina reparent tetlarikator			8381
CONTRACTOR OF	1228	题	-	816		_		
Solida Sector Sector Se	244				The second	THE OWNER WAR		
Constantian Constantian Constantian National Constantian	122	122	-		And the second		Tearri Bala	-
Reliance	1000	盟	=	1.0	Shares		dines	all areas
Statute of a second second	- 110	tint.	+		Langtonia Informa			
Survey of Conversions	811	222	-	**	nigeneau I			e **
Tanggines Designes Tanggines in technik silari	1282	122249	-	440	Dermal 3rkmplath.evel		STILLING ST	1.00
For Bases Vigits	122	100	-	8.00 C	Corpora reportent restaritation			
			4444	22223		_	10111111	
			- 10.00		"	transfer all		
							Med. 2012:2	

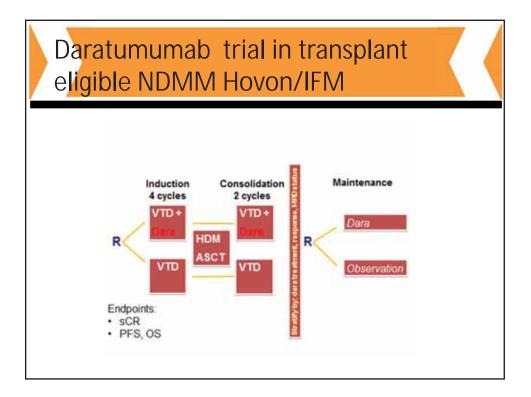
Study/ Year	Time Randomized	N	Bortezomib Regimen	Control Arm	Median PFS (mos)	Median OS (mos)
Sonneveld 2012'	At diagnosis	827	1.3 mg/m² Q 2 wks×2 yrs	BTZ Thal	35" 28	61%* vs 55% at 5 yrs
Mellqvist 2013 ²	Post- ASCT	370	1.3 mg/m² ×20 doses (7 mos)	BTZ None	27* 20	NS (75–80% at 3 yrs)
Rosinol 2013 ²	Post- ASCT	266	1.3 mg/m ² D 1,4,8,11 q 3 mo + thal 100 mg/d ×3 yrs	VT Thai IFN	- 43' -36 -24	NS

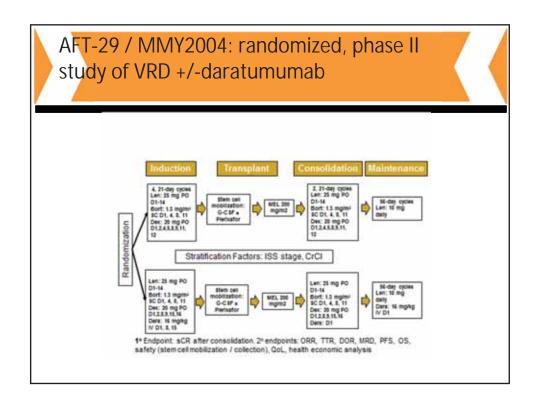


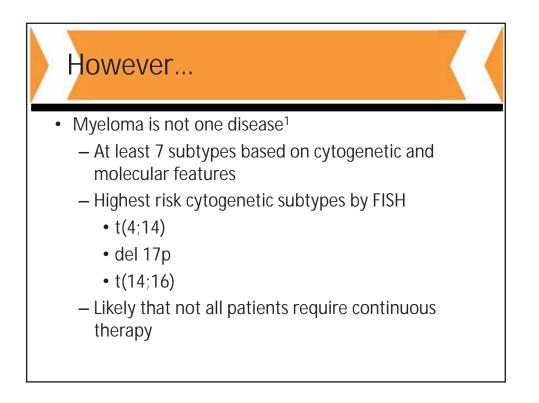


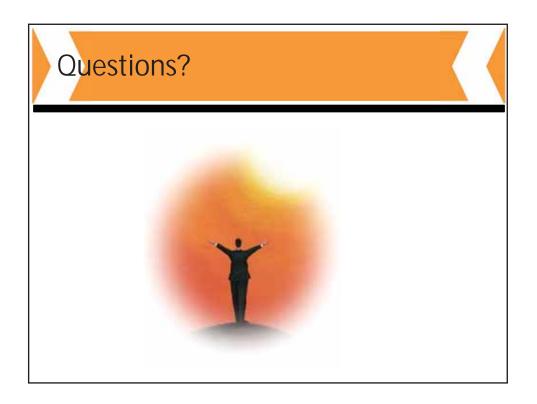

Final Results of a Phase 2 Trial of Extended Treatment With Carfilzomib, Lenalidomide, and Dexamethasone (KRd) Plus Autologous Stem Cell Transplant (ASCT) in Newly Diagnosed Multiple Myeloma

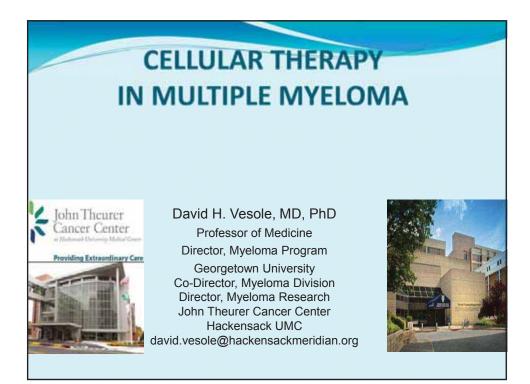

Todd M. Zimmerman, Noopur Raje, Ravi Vij, Donna Reece, Jesus G. Berdeja, Leonor Stephens, Kathryn McDonnell, Cara A. Rosenbaum, Jagoda K. Jasielec, Paul Richardson, Sandeep Gurbuxani, Jennifer Nam, Erica Severson, Brittany Wolfe, Shaun Rosebeck, Andrew Stefka, Dominik Dytfeld, Kent Griffith, Andrzej J. Jakubowiak

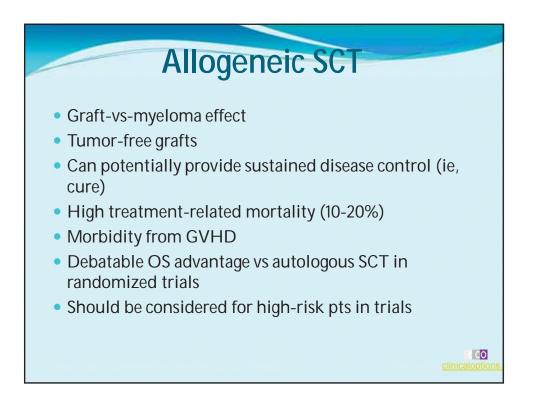




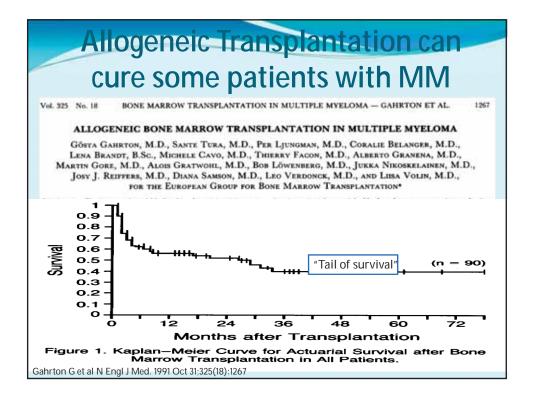


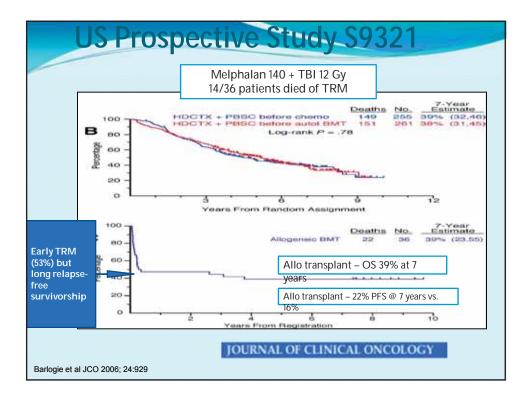


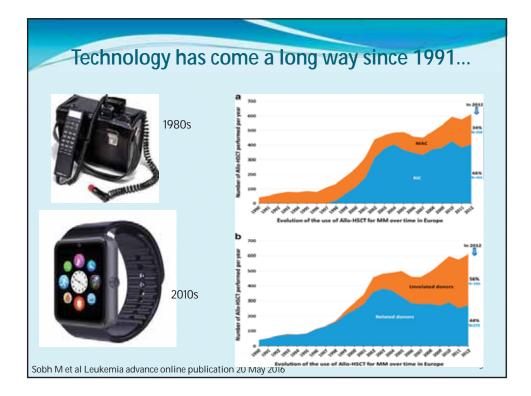


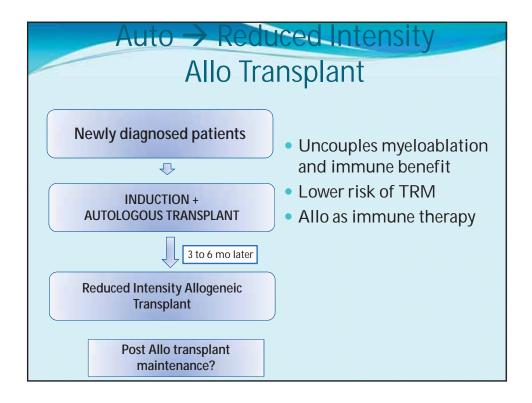


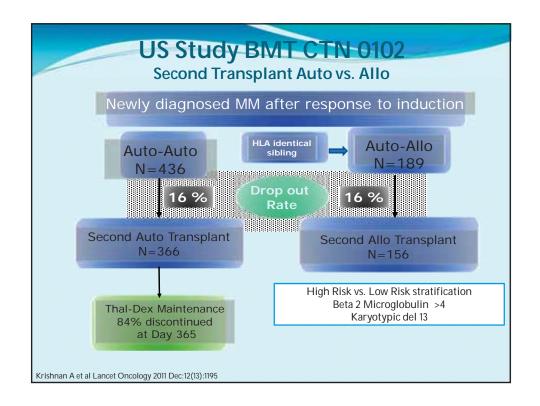
Conclusions

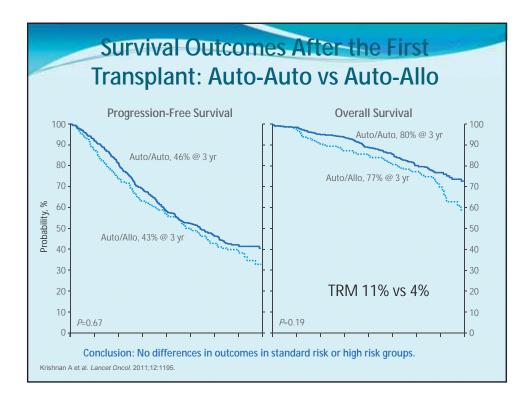

- Consolidation therapy currently remains an element of clinical trials aiming to minimize disease burden and improve patient outcomes.
- Long-term maintenance treatment is now widely accepted standard. However, the optimum agents, duration of maintenance and need for maintenance therapy for all patients remains an area for future research

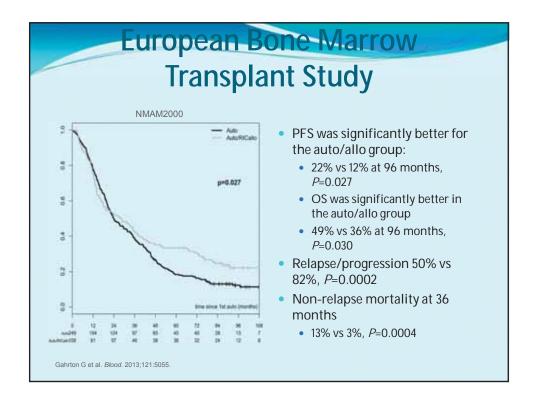


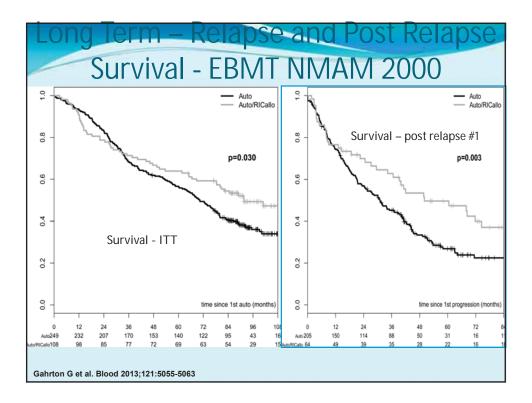


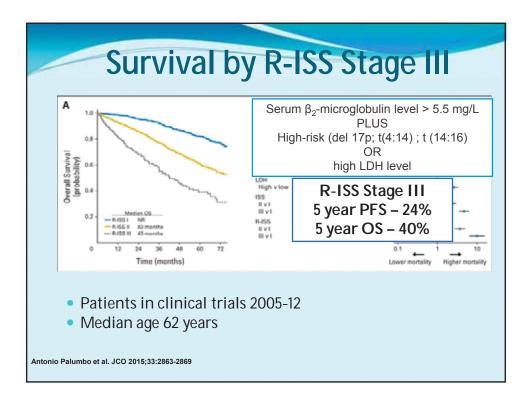

10/31/2017

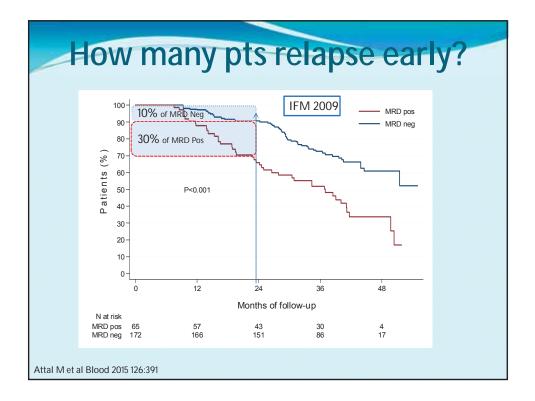


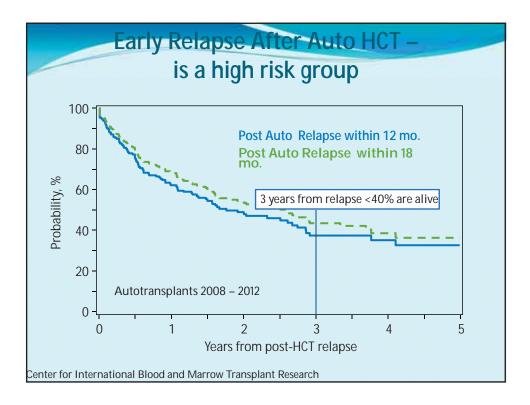


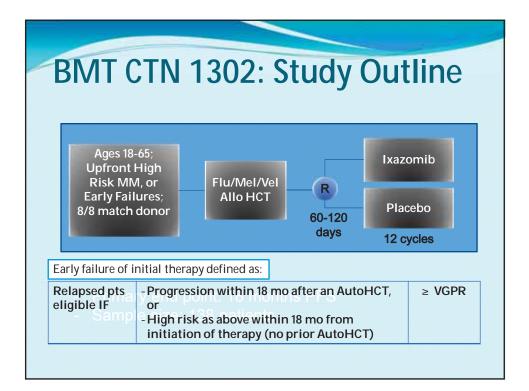

10/31/2017

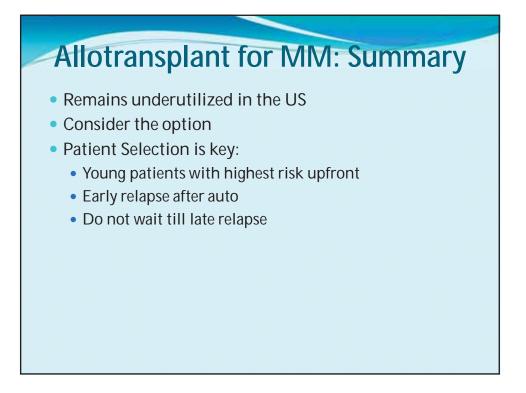




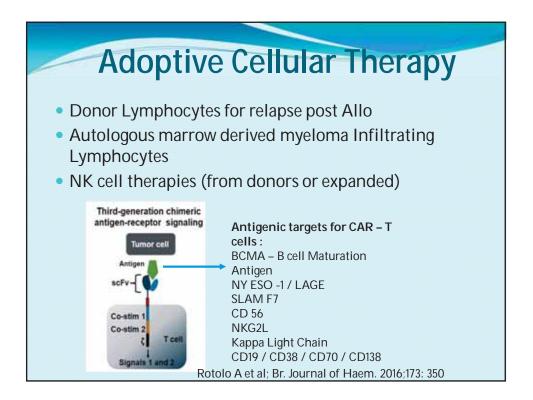


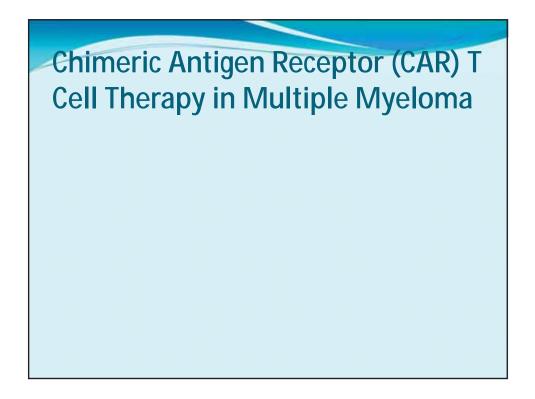


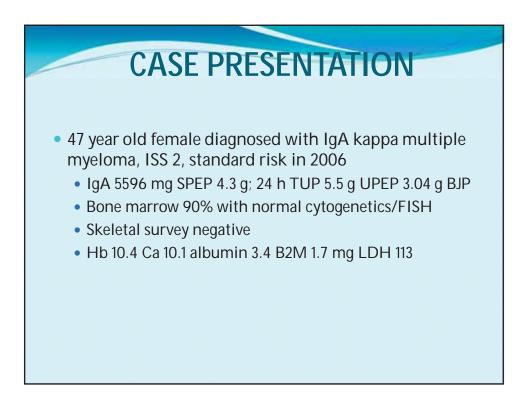

Tander			s Comparir I vs. Tandeı	Contract of the second s	ст
Author	Population	Auto	Allo	PFS Allo/Auto	os
Bjorkstrand/Gahrton	<70yrs	Mel200/200	Flu+TBl200cGy 8yr	22% vs. 12%	49% vs. 39%
Garban	Del13 or B2>3mglL	Mel200/220	Bu Flu ATG	No Diff PFS/OS	
Giaccone/Bruno	<65yrs	Mel200/100- 200	TBI 200cGy	35mo/29mo	80/54mo
Krishnan	<70yrs	Mel200/200	TBI 200cGy	No Diff PFS/OS	
	TRM 10-16%	2			

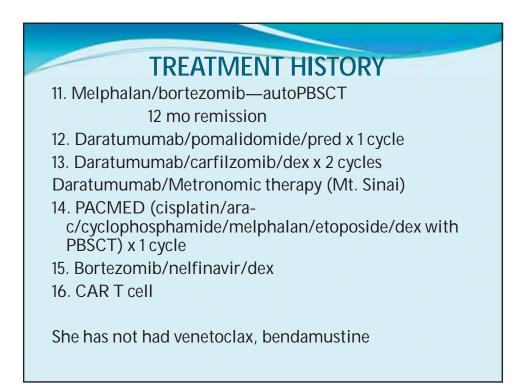


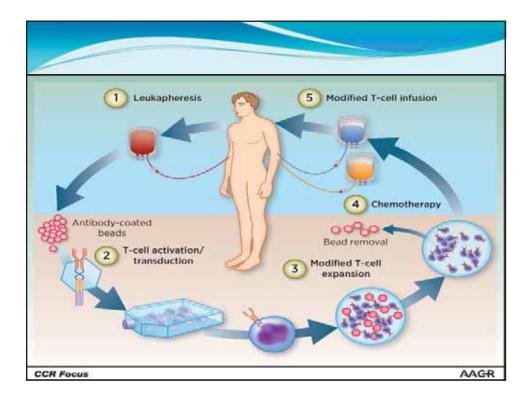
		cure" high ri	SK ?
Author	N	HIGH RISK DEFINITION	High risk Allo vs. Auto
ebmt Nmam	92	Deletion 13 q	PFS - 8 years 21% vs. 5% OS - 8 years 47% vs. 31%
Knop	199	DEL 13q + DEL 17p	Median PFS NR vs. 6 mo Median OS NR vs. 23 mo
Hi Risk M		Tandem AUTO 🔶	2-year PFS 59% vs. 47% wit
< 65 year: N - 199		1 Auto #1 → Flu MEL +- ATG ALLO with Sib or URD (incl 9/10)	2 Yr PFS

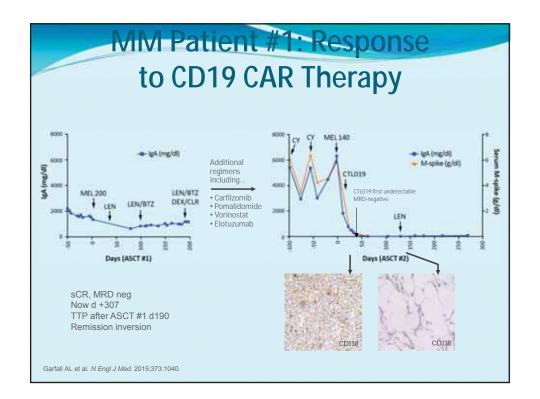


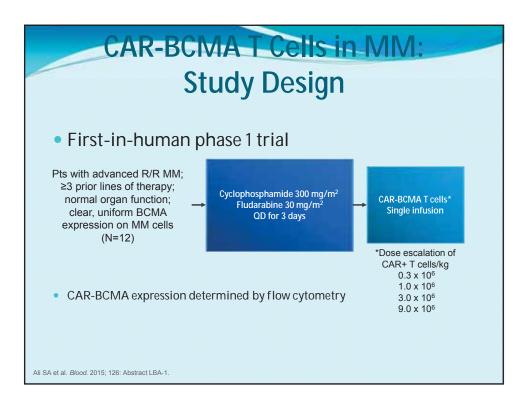

<text><text><text><text><text>


Giralt et al, BBMT 2015 Dec;21(12):2039

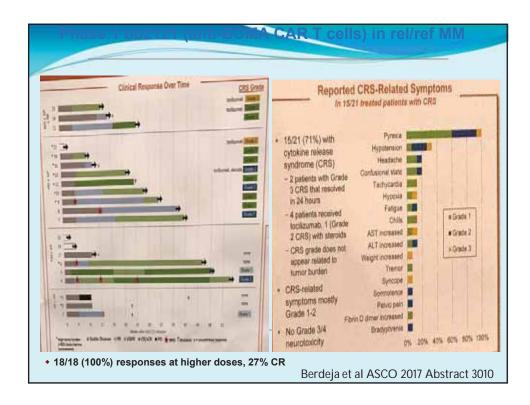


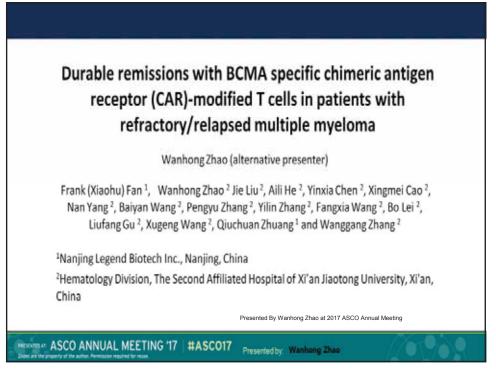




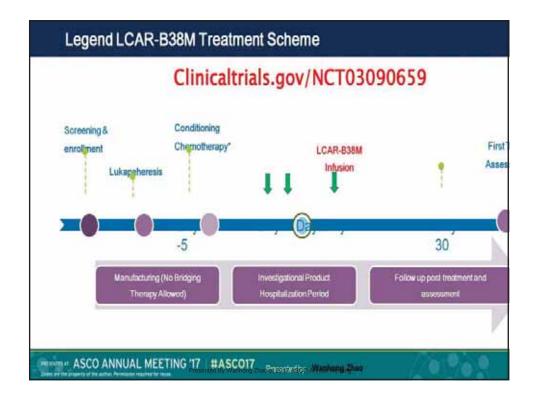


CLINICAL COU	IRSE OF RELAPS	FD REFRACTOR	Y POST CAR T CE	LL THERAPY
Date	3/24/17	6/13/17	7/25/17	10/18/17
Treatment	Pre-CAR T	2 mo post	3 mo post	6 mo post
SPEP	110 0/101	2 110 0031	51110 post	0 110 0031
M Spike 1 g/dl	0.39	0	0	0
M spike 2 g/dl	0.17	0	0	0
Serum Immunofixation	IgA kappa	Negative	Negative	Negative
Kappa Lambda Free Light				
Chain				
Kappa Free Light Chain mg/I	351.3	,1	<1	2.87
Lambda Free Light Chain mg/I	< 1	<1.3	<1.3	5.53
Kappa Lambda Ratio	UTD	UTD	UTD	0.52
Serum Immunoglobulins				
B2M	4.04	1.68	1.87	
lgA mg/dl	128	< 5	< 5	6
lgG mg/dl	681	229	130	109
IgM mg/dl	12	< 5	< 5	21
24 Hour Urine				
Protein	234	480	90	225
M Spike	15	0	0	0
Immunofixation	Free kappa	Negative	Negative	Negative
СМР				
Calcium mg/dl	9.3	8.6	8.5	9.7
Creatinine mg/dl	0.64	0.65	0.79	0.7
Albumin g/dl	4.4	4.4	4.0	4.2
BM	> 50%		Negative/MRD negative	Negative/MRD negative
	t(14;16)			
PET CT	1. Right posterior ilium 4.5	1. Right posterior ilium 4.5	1. Right posterior ilium SUV	Negative
	2. Proximal left femur 2.9	2. Proximal left femur 3.1	equals 3.5.	
	3. Proximal right femur 1.9	3. Proximal right femur 3.1	2. Proximal left femur 2.1	
	4. Distal left femur 4.5	4. Distal left femur 2.9	3. Proximal right femur 2.4	
	5. Distal right femur 4.8	5. Distal right femur 3.2	4. Distal left femur 2.6	
	6. Proximal left tibia 1.0	6. Proximal left tibia 1.0	5. Distal right femur 2.0	

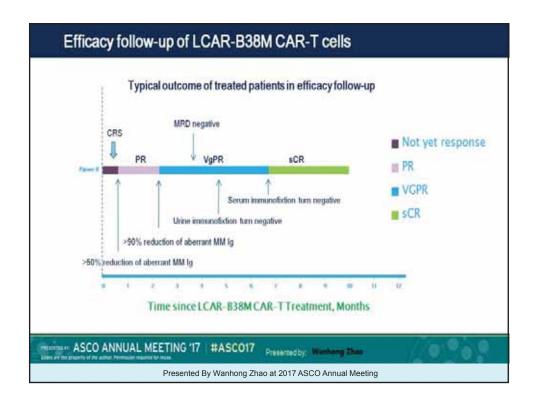


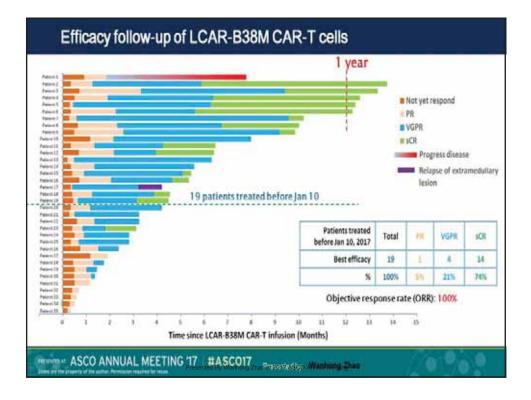


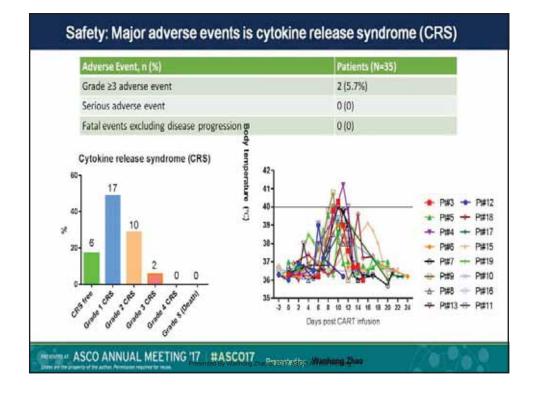
		Respons	se	
Pt	Myeloma Type	CAR-BCMA Dose (T cells/kg)	Response	Response Duration, Wks
1	κ light chain only	0.3 × 10 ⁶	PR	2
2	IgA λ	0.3 × 10 ⁶	SD	6
3	κ light chain only	0.3 × 10 ⁶	SD	6
4	κ light chain only	1.0 × 10 ⁶	SD	12
5	IgG к	1.0 × 10 ⁶	SD	4
6	IgG λ	1.0 × 10 ⁶	SD	2
7	IgG λ	3.0 × 10 ⁶	SD	7
8	κ light chain only	3.0 × 10 ⁶	VGPR	8
9	κ light chain only	3.0 × 10 ⁶	SD	16
10	IgA λ	9.0 × 10 ⁶	sCR	12+
11	IgG λ	9.0 × 10 ⁶	PR	6+
12	IgA λ	3.0 × 10 ⁶	SD	2

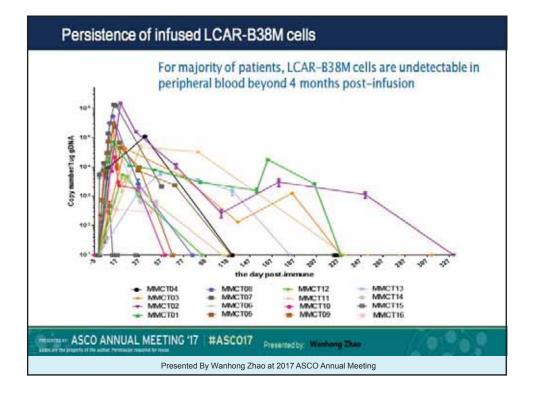

	comparison of CA	RT-BCMA trials (pr	e-ASCO)
	NCI	Penn (cohort 1)	Bluebird
Sites	Single	Single	Multi-center
scFv	Murine	Human	Murine
Vector	Gamma-retroviral	Lentiviral	Lentiviral
Domains	CD3/CD28	CD3/41BB	CD3/41BB
BCMA+ required	Yes (IHC) (52/85 (62%) +)	No	Yes (??)
Dosing	0.3 – 9x10 ⁶ /kg 1 day	5 x 10 ⁸ 3 days	0.5 – 4.5 x10 ⁸ 1 day
Conditioning	Flu/Cy	-	Flu/Cy
Med # priors	7*	9	6
Responses (Longest)	4/12 (4.5+ mos)	4/9 (12+ mos)	7/9 (8+ mos)
*incl	udes XRT		
Ali et al, Blood	2016; Cohen et al, ASH 2016, #1147; Lin	et al, EORTC-NCI-AACR Symposium 2010	6

 Cytoxan/ Requires 	>50% BCMA	AR conditioning A+ MM cells I ollected / 21 t	by IHC		
Demographics and	Clinical Chara	cteristics		nent History	54.4).
Parameter	Statistic	N=21 Dosed Patients	Parameter	Statistic	N=21
Age years	Median (range)	58 (37-74)	Prior lines of therapy		Desed Pation
Male gender	n (%)	13 (62%)	Prior autologous SCT	Median (range)	7 (3-14)
Time since diagnosis	Median (range)		Prior therapies	n (%)	21 (100%)
(years)	median (range)	5 (1-16)	Bortezomib	Exposed	Refractory
ECOG = 0	n (%)	10 (48%)	Carfilzomib	100%	67%
ISS Stage			Lenalidomide	91%	57%
in the second se	n (%)	6 (29%) 11 (52%)	Pomalidomide	100%	86%
10		4 (19%)		91%	71%
High-risk cytogenetics	MIN STOR		Daratumumab	71%	48%
(del17p, t(4;14), t(14;16), 1g, del 13)	N\n (%)	14 (67%)	Cumulative Exposure Bort / Len	Exposed	Refracto
14, 00(15)				100%	67%
			Bort / Len / Car	91%	48%
			Bort / Len / Pom	91%	57%
ECOG. Eastern Cooperative One	clogy Group Performa	nce Score	Bort / Len / Car / Pom	86%	43%
ISS International Staging System		nue onore	Bort / Len / Car / Pom / Dara	71%	29%

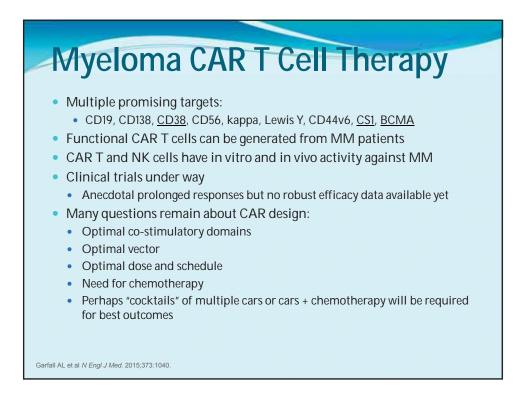




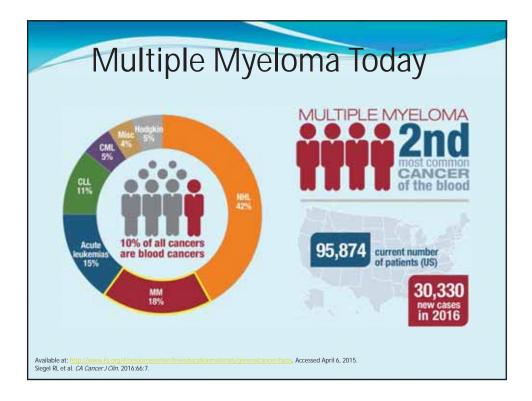


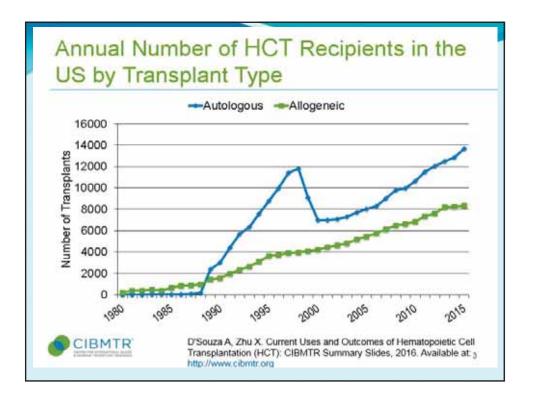


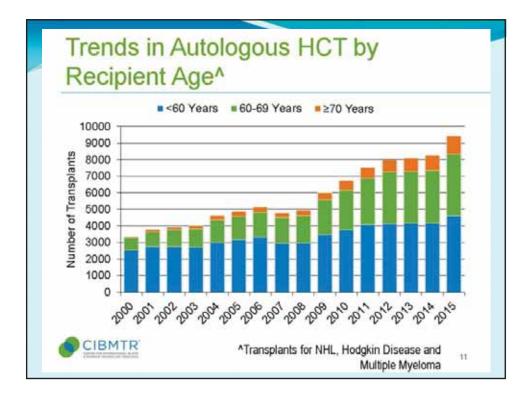
Clinicaltrials.	gov/NCT03090
Characteristic	Cohort
/r MM patient, total number enrolled	35
Median age (range), years	55 (43-72)
Male, n(%)	19(54)
Durie-Salmon stage, n(%) I/IIA/IIIA/IIIB	1(3)/4(11)/ 25 (71)/ 5 (14
Number of prior lines of therapy, n(%) 3/4/25	14 (40)/ 16 (46)/ 5 (14)
Refractory subgroup, n(%) Refractory to ≥ 2 nd line therapy	35(100)

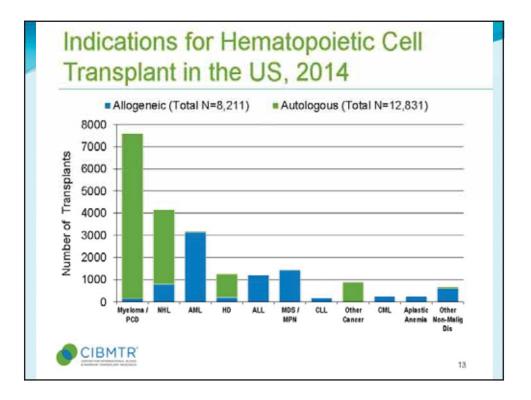


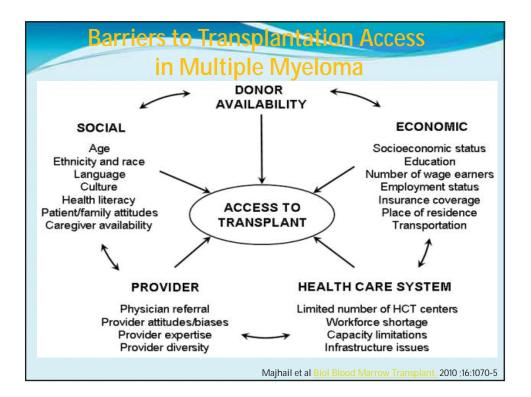






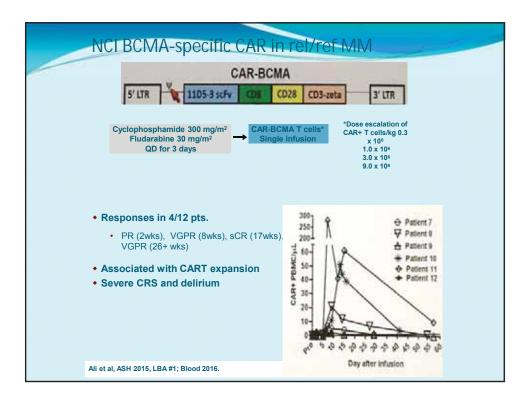


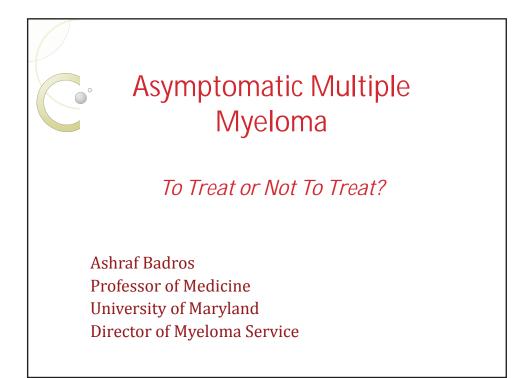

Antibodies	Antibodies	Cellular
 Immune cell-targeting Iplimnumab (CTLA-4) Tremilimumab (CTLA-4) Nivolumab (PD-1) Pembrolizumab (PD-1) Pidilizumab (PD-1) Atezolizumab (PD-1) Linilumab (KIR) Urelumab (CD137) SGN-40 (CD40) Tumor-targeting Elotuzumab (SLAMF7) Daratumumab (CD38) Isatuximab (CD38) GSK2857916 (BCMA) AMG224 (BCMA) ABBV-838 (SLAMF7) SGN48A (CD48) 	 Bispecifics / BiTEs Bi 836909 / AMG420 (BCMA) JNJ-64007957 (BCMA) PF-06863135 (BCMA) EM801 (BCMA) BFCR4350A (FCRH5) Vaccines Deaddific cell_MMM fusion GVAX Nec-antigens PVX-410 (CD138, SLAMF7 XBP-1 peptides) galinpepimut-S (WT1 peptides) Other 	 Non-gene-modified cells ALI (MSKCC/MSSM) aML (Hopkins) WT1 cell lines (MSKCC) NK cells Gene-modified T cells NYESO1 TCR Adaptimune Penn/PICI BCMA CAR NCI Penn/NVS Bluebird Nanjing Legend MSKCC/Juno Kite Southwest Hospital (China) Poseida Other CAR targets
	IMiDs ALT-803 (IL-15) Measlesvirus IDO inhibitors	SLAMF7 NKG2D

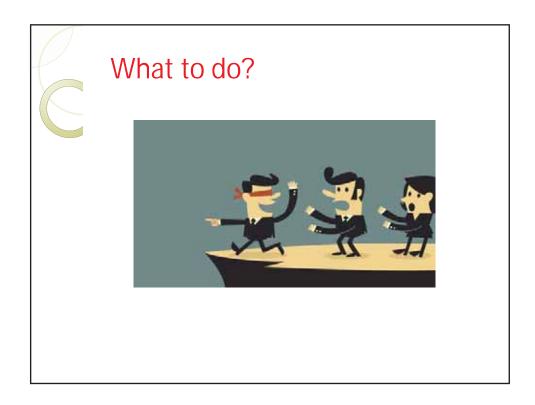


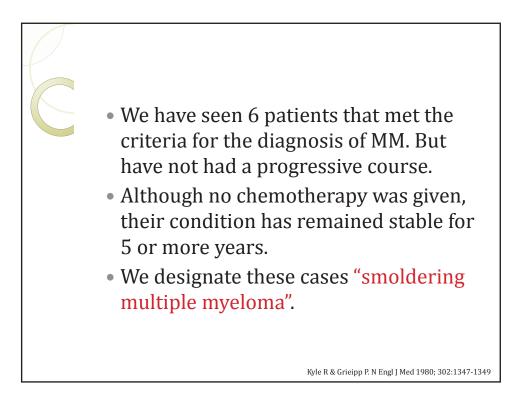
Trends in the Upfront Utilization of Autologous Hematopoietic Cell Transplantation in Multiple Myeloma by Age

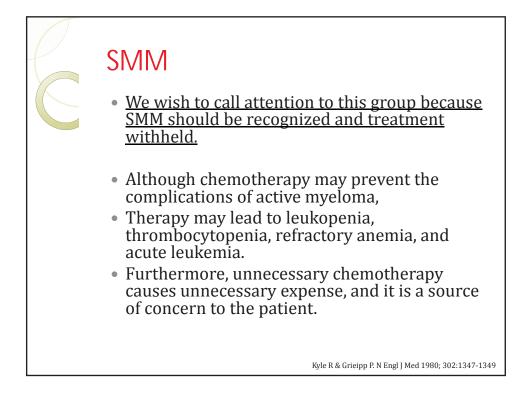
Patient Characteristics	1995-1999	2000-2004	2005-2010
Median age at transplant (range)	54 years (27-73)	57 years (22-80)	57 years (22-80)
< 50 years	32%	21%	21%
50-64 years	60%	59%	59%
<u>≥</u> 65 years	7%	20%	20%
	Costa et	al Biol Blood Marrow Tran	splant. 2013; 19:1615-1624

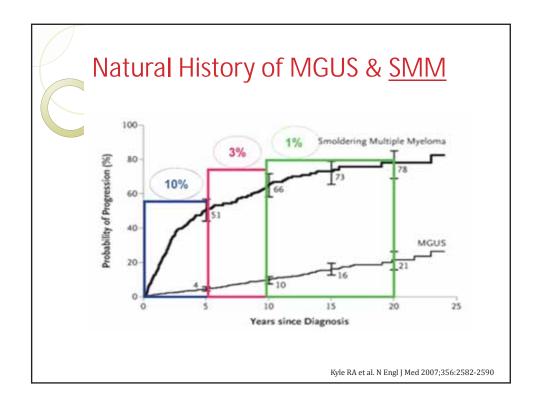

Hematopoietic Stem Cell Transplantation Utilization Rates in the United States

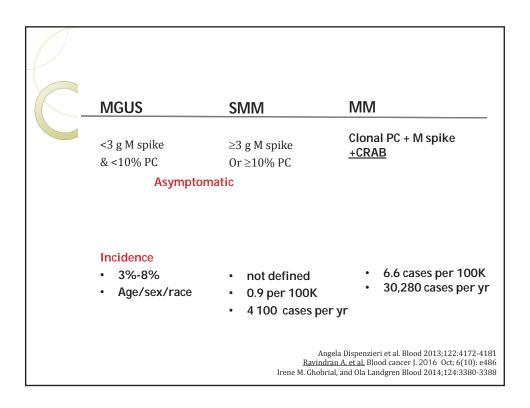

Year	Hispanic	Non- Hispanic Black	Non- Hispanic White	Overall
2008	8.6	12.2	22.6	19.1
2009	9.8	13.2	26.6	21.9
2010	11.9	15.7	29.4	24.7
2011	11.4	18.2	34	27.8
2012	14.2	19	35.4	29.5
2013	16.9	20.5	37.8	30.8
				CIBMTR stati

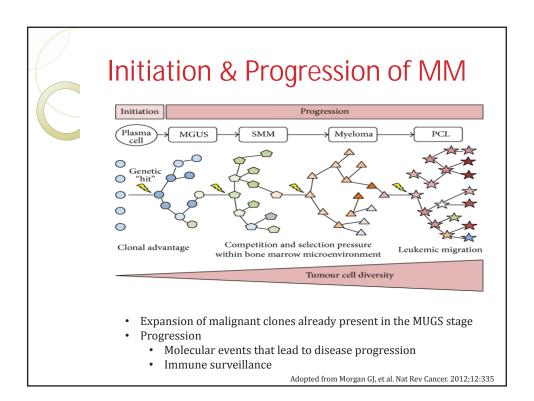

Recommendations for Address			
Barriers to Transpl	antation		

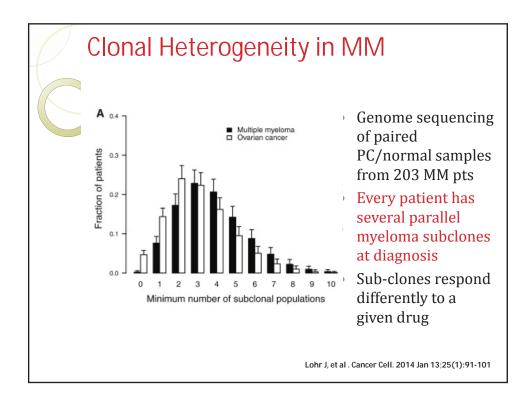

Barriers	Recommendations	
Delayed HCT referral	Improved education for referring HCPs	
Lack of cells mobilized	Target minorities to become donors	
Financial burden	Make search assistance funds available Advocate for patients for insurance appeals	
Lack of social support and caregiver issues	Engage in advocacy efforts	
Poor acces to health care, including geographic barriers	Research disparities in healthcare access Target at-risk populations for outreach	
Barriers in language, culture, literacy	Use culturally sensitive patient education materials	
Murphy et al Biol Blood Marrow Transplant. 2010; 16: 14		

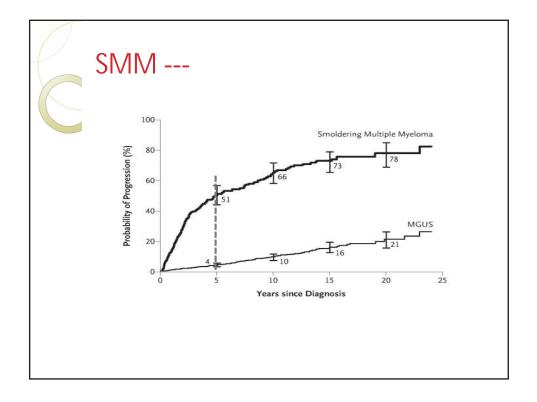


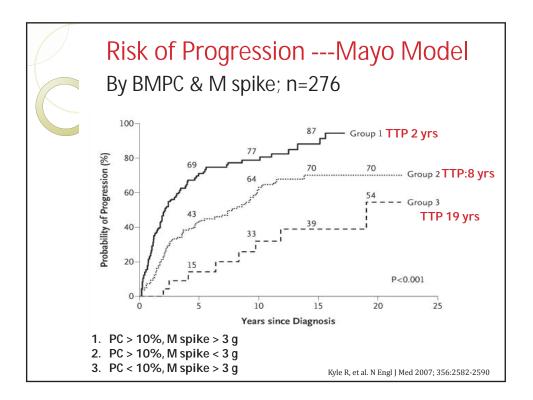


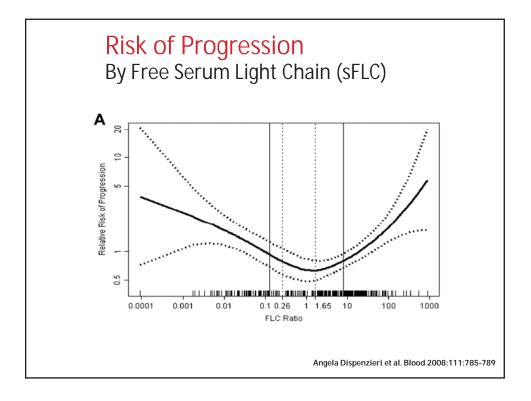


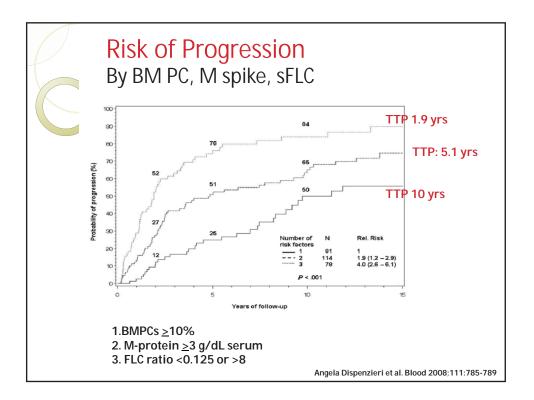


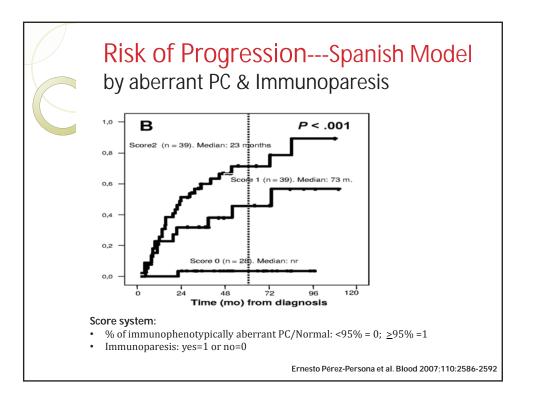


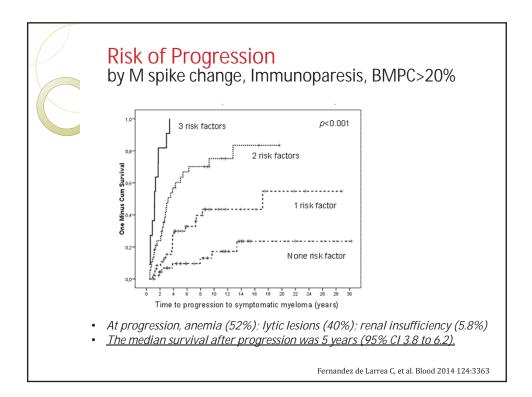


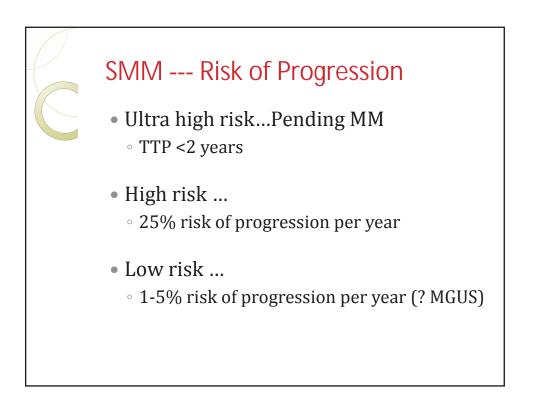


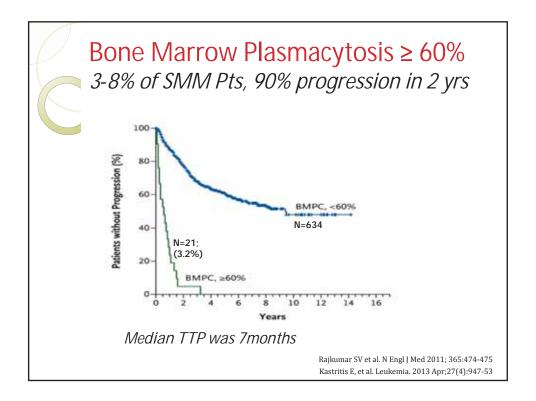


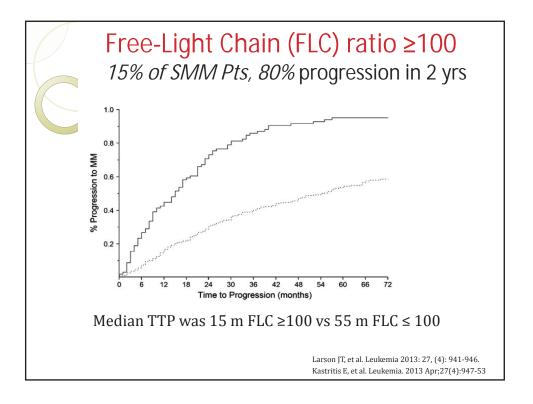


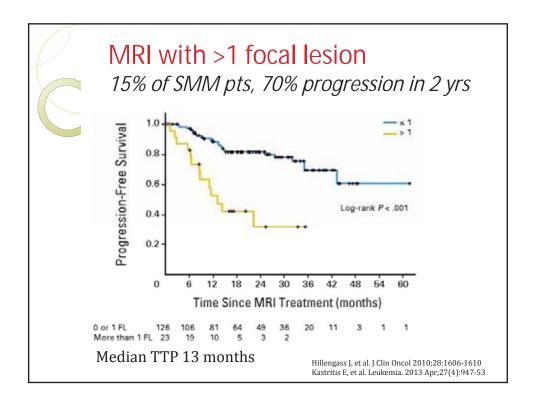


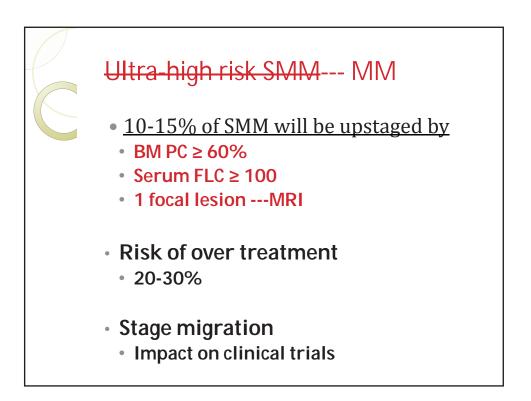

5

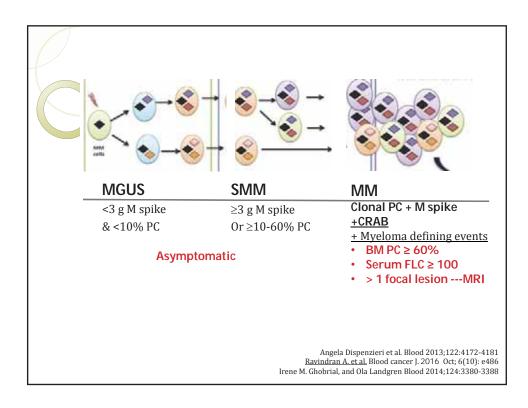


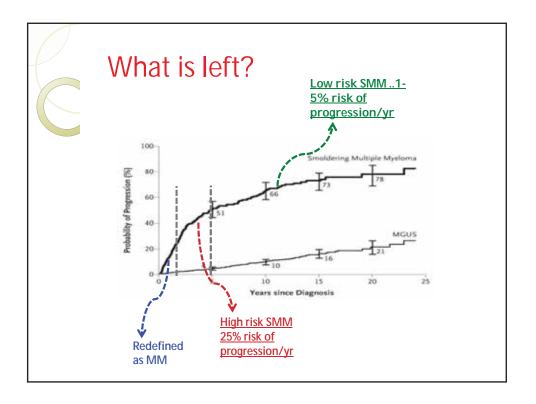


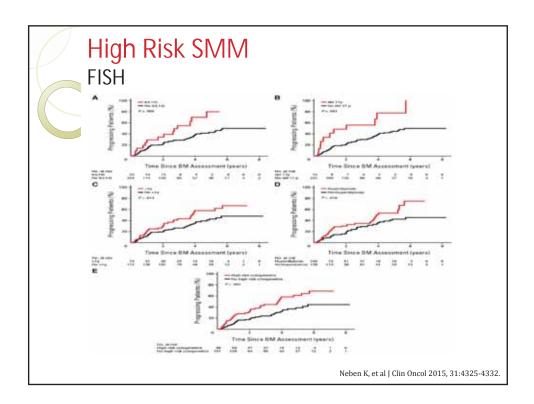


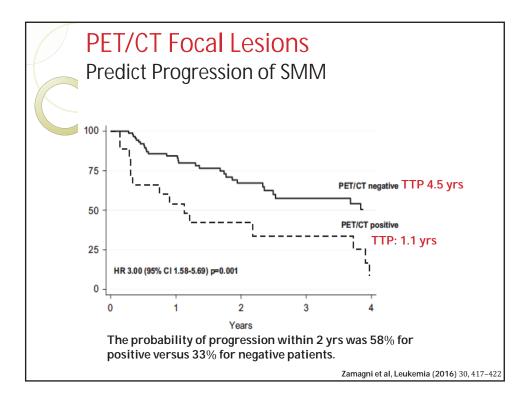




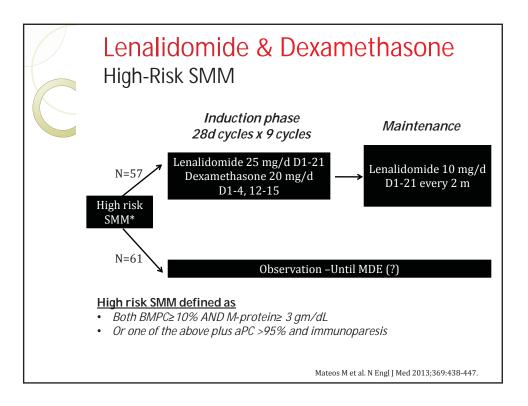


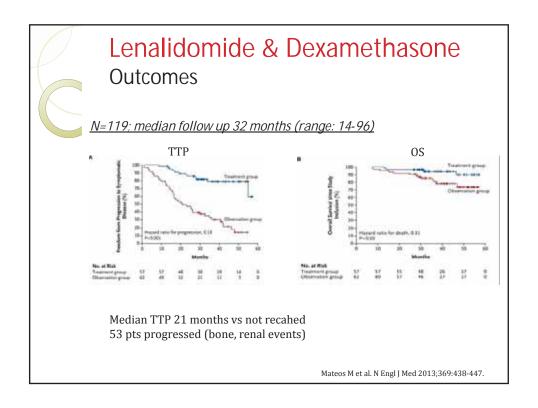


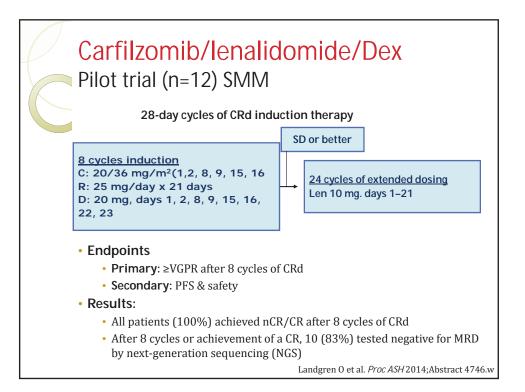


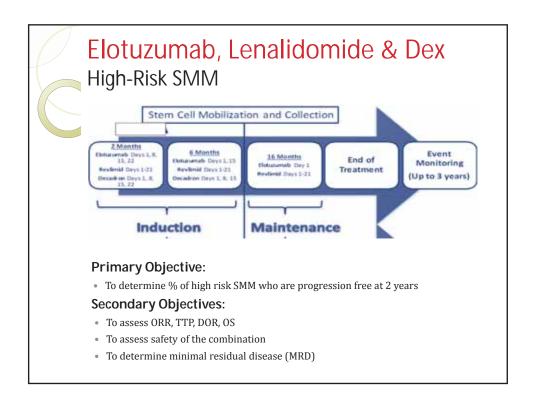

Definitions Of High Risk SMM

- ~50% risk of progression within 2 years
- <u>Clonal BMPC \geq 10% < 60% and any of the following:</u>
 - Serum M protein \geq 30 g/L
 - IgA isotype
 - $\,\circ\,$ Immunoparesis with decrease of 2 involved Ig isotype
 - ∘ Serum FLC ratio ≥ 8 but < 100
 - Increase in M protein by $\ge 25\%$ in 6 months
 - $^\circ~$ Clonal BMPCs 50-60%
 - Abnormal BMPC phenotype & decrease ≥ 1 uninvolved Ig
 - $^\circ~$ t(4:14) or del 17p, or 1 q gain
 - Circulating PC
 - MRI with diffuse abnormality
 - $\circ~$ PET/CT with focal uptake with no osteolytic lesions.


Rajkumar V, et al. Blood. 2015 May 14; 125(20): 3069–3075.

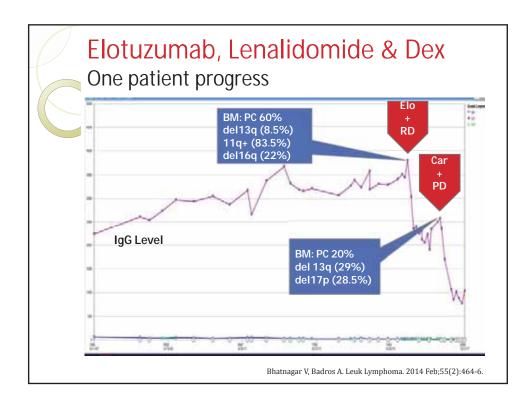

R	High-risk SMM		
	Risk (n=248)	TTP (Yrs)	Р
	Cytogenetics high vs low	3.7 vs N/A	.001
	FISH		
	+1q21 vs no gain of 1q21	3.9 vs N/A	.02
	del(17p13) vs no del(17p13)	2.0 vs 5.6	.001
	t(4;14) vs no t(4;14)	2.9 vs 5.7	.003
	HD vs NHD	3.9 vs N/A	.016
	Tumor mass low vs high	1.2 vs 9.03	< .001
	aPC > 95% vs < 95%	1.2 vs 9.03	<.001
	FLC ratio abnormal vs nl	2.7 vs N/A	.001
	Immunoparesis yes vs no	4.1 vs N/A	.003
			Oncol 2015, 31:4325-4332. n Oncol 2015 , 33, 115-123.

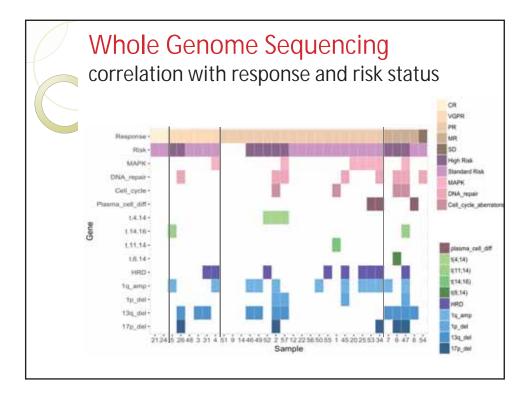




Adverse Even	ts		
	Grade 1	Grade 2	Grade 3
		num	ber of patients (perce
Induction phase			
Hematologic event			
Neutropenia	3 (5)	8 (13)	3 (5)
Thrombocytopenia	6 (10)	1 (2)	1 (2)
Anemia	11 (18)	4 (6)	1 (2)
Nonhematologic event			
Infection†	19 (31)	6 (10)	4 (6)
Rash	12 (19)	6 (10)	2 (3)
Asthenia	6 (10)	5 (8)	4 (6)
Constipation	4 (6)	6 (10)	0
Diarrhea	9 (15)	4 (6)	1 (2)
Deep-vein thrombosis	1 (2)	2 (3)	0

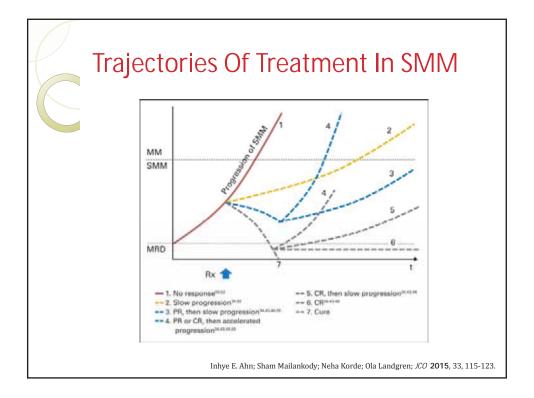
Adverse Events		
	All events	Grade 3 or 4
Lymphopenia	100%	42%
Leukopenia	92%	8%
Thrombocytopenia	92%	25%
Electrolyte disturbances	92%	17%
Elevated liver function tests	92%	17%
Rash/pruritus	75%	25%
Anemia	67%	17%
Diarrhea	67%	17%
Neutropenia	42%	17%
Increased serum creatinine	17%	17%

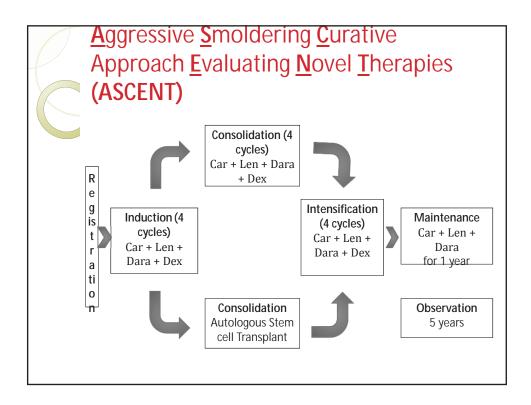

Elotuzumab, Lenalidomide & Dex Patients Characteristics		& Dex
	Total	(n = 50)
Characteristics	n	%
Median age, years (range)	62 (29-79)	
Male sex	18	36.0
Race		
White	41	82.0
Black	7	14.0
Heavy-chain type		
IgG	33	66.0
IgA	15	30.0
BM plasma (%)	20.0 (10.0-60.0)	BM plasma (%)
Cytogenetics (n=45)		
del 17p; p 53 mutation	5, 3	11,6
t(4:14), t(14:16)	6, 3	13,6
1q21 amp	11	24
t(11:14)	3	6
High Risk	20	44

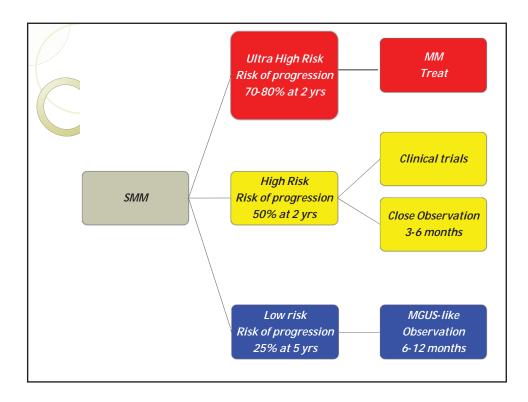

Elotuzumab, Lenalidomide & Dex Adverse Events > 10%

Toxicity category	Toxicity type	n (%)
Skin reactions	Rash maculo-papular	5 (10.0)
Hematological conditions	Anemia	6 (12.0)
	Neutropenia	10 (20.0
	Thrombocytopenia	6 (12.0)
	Lymphopenia	11 (22.0
	Leucopenia	5 (10.0)
Metabolism and laboratory conditions	Hyperglycemia	11 (22.0
	Hypophosphatemia	17 (34.0
Psychiatric disorders	Insomnia	5 (10.0)
Infections and infestations	Pulmonary infection	15 (30.0
Cardiovascular disorders	Hypertension	5 (10.0)
Respiratory disorders	Dyspnea	5 (10.0)
Gastrointestinal disorders	Constipation	8 (16.0)
	Diarrhea	7 (14.0)

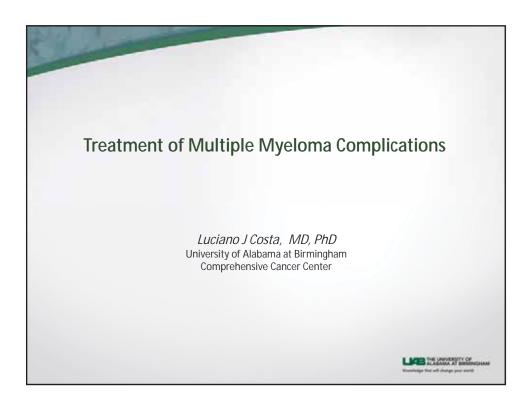
Elotuzumab, Le	nalidomide	&	Dex
Response			

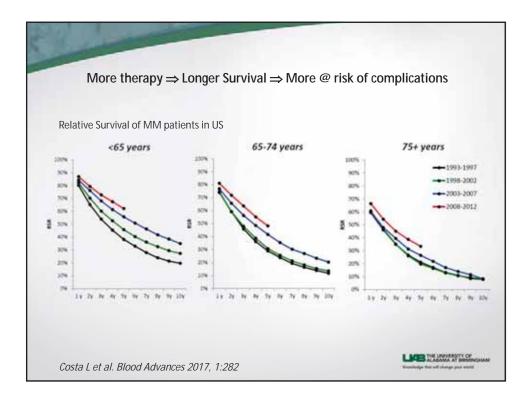

Best response	n	%
CR	3	6
VGPR	13	26
PR	24	49
MR	7	14
SD	2	4
Clinical response benefit (≧MR)	47	100
Response rate (≧PR)	40	82

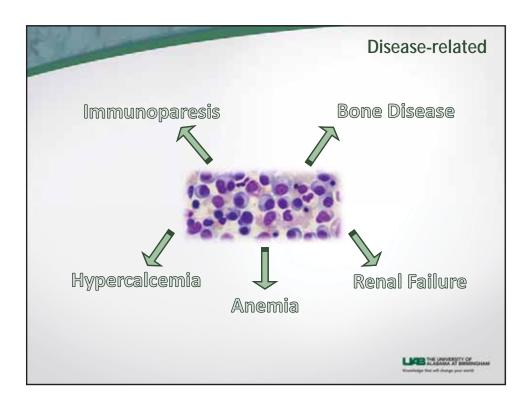


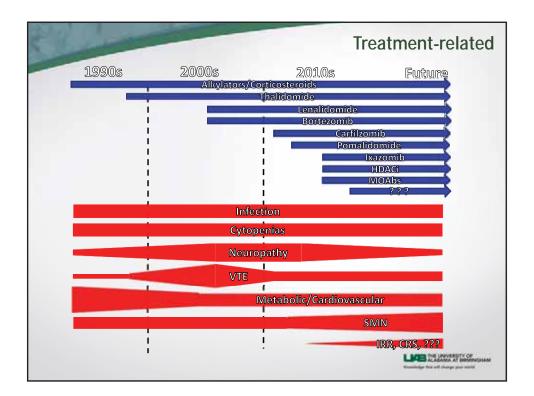


- 51 Trials on Clinicaltrials.gov
 - MM (IMiDs, PI, antibodies, SCT, etc...)
 - \circ PD-1 inh
 - \circ Statins
 - Ibrutinib
 - Anti-IL-6, IL-1 antibodies
 - Anti-KIR
 - $\circ\,$ Green tea extract

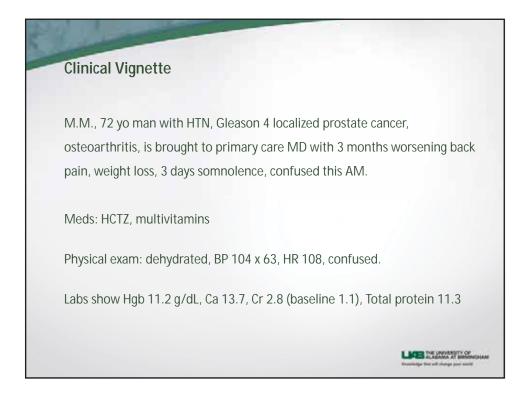


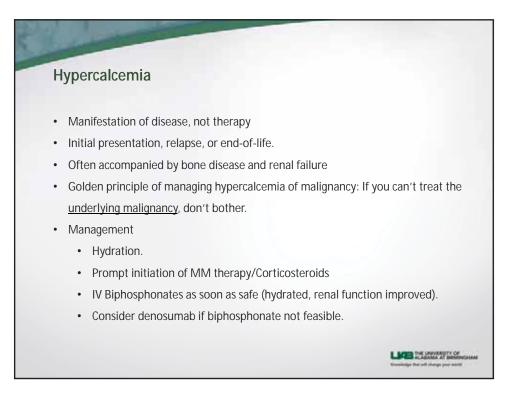


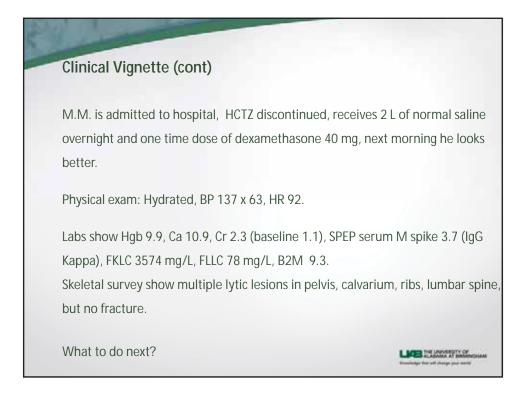


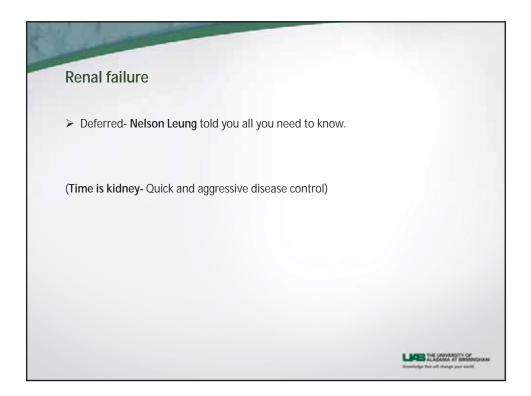

Comments

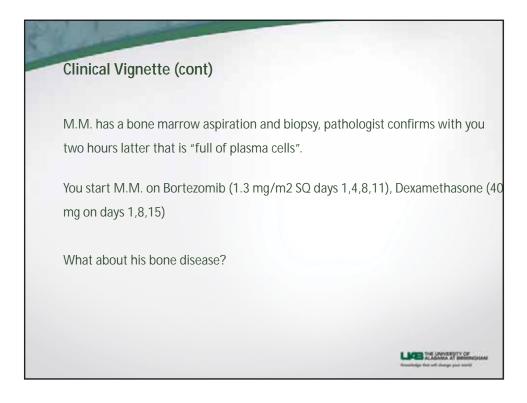
- $^{\circ}$ What is the goal of the rapy in SMM?
- $^{\circ}$ Can early the rapy provide cure?
- How about clonal selection?
- Cost and side effects ---

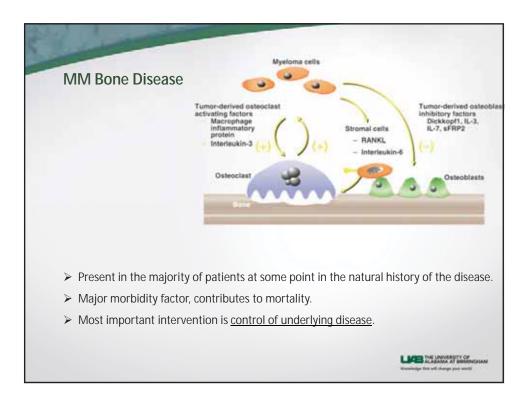


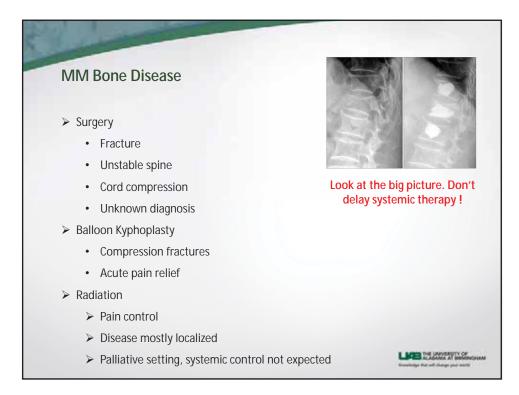


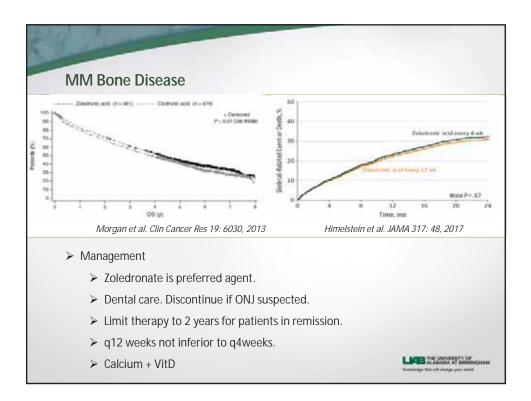


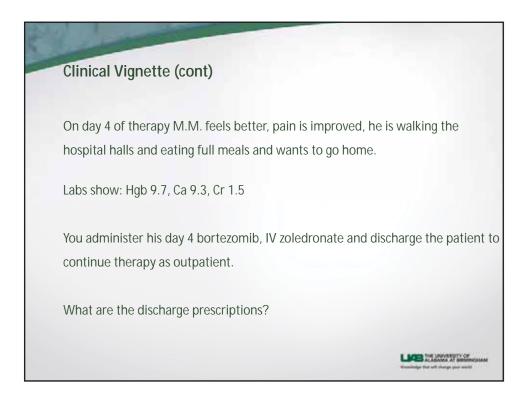

10/31/2017

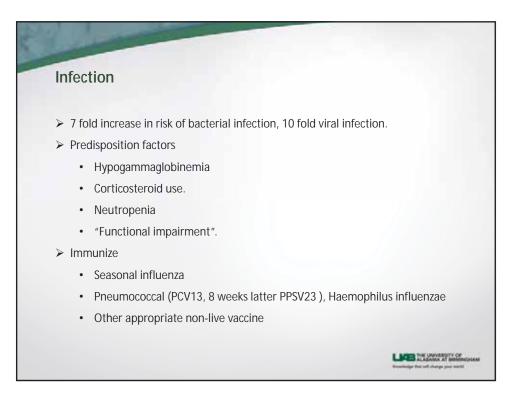


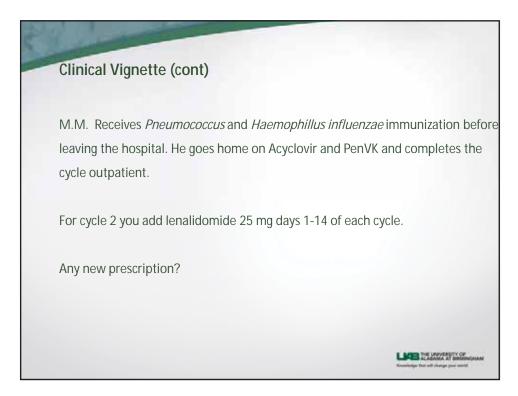


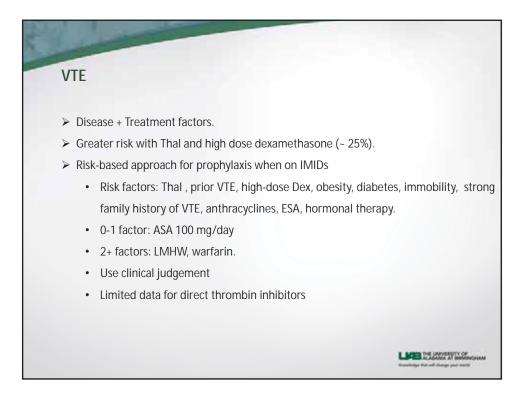


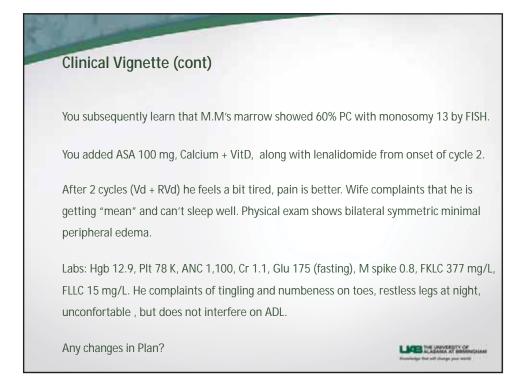


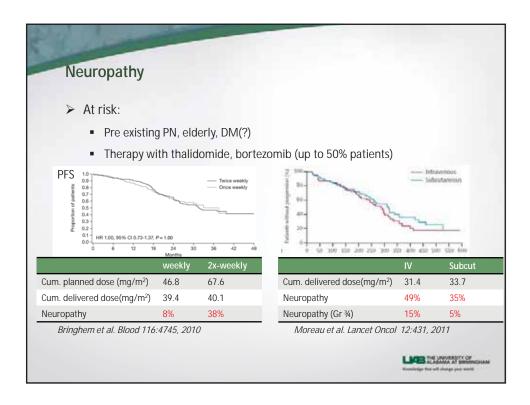


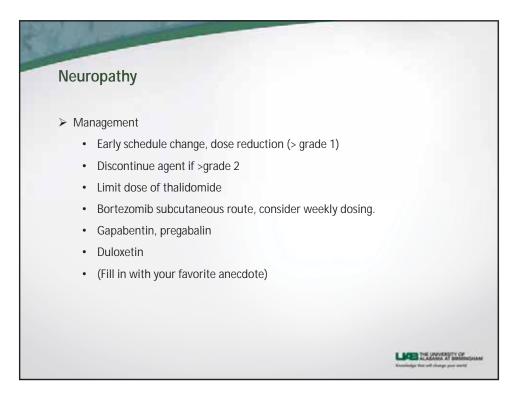


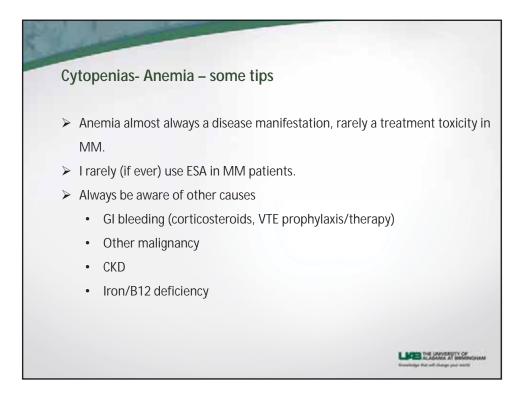


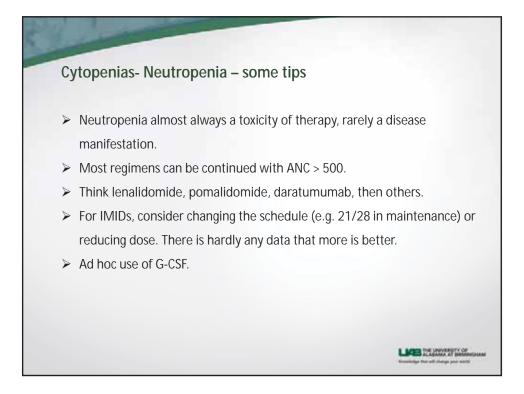


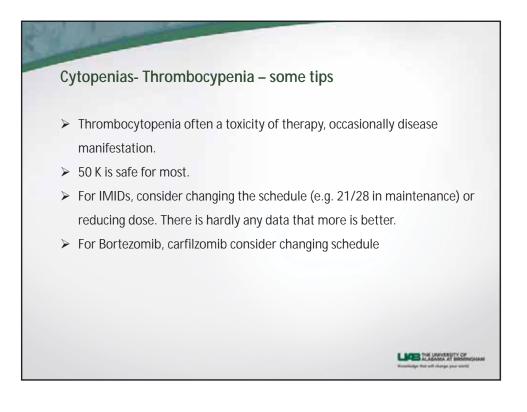


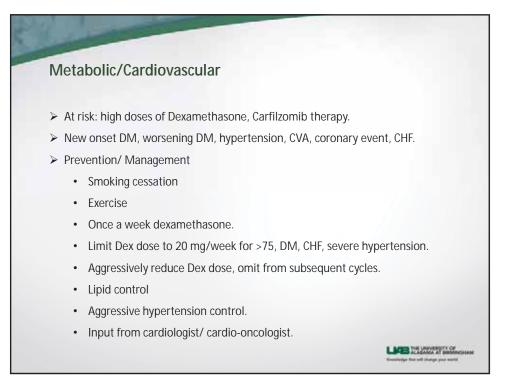


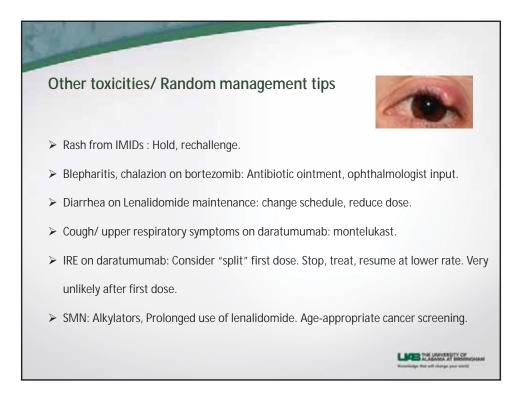


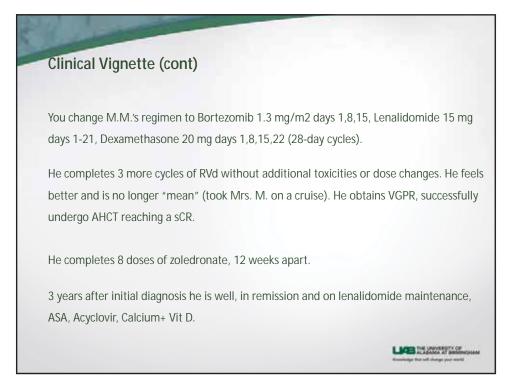


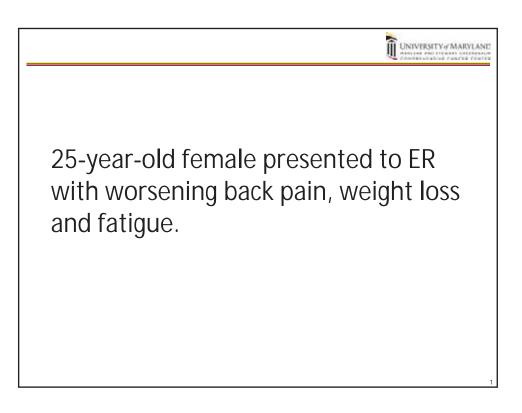

10/31/2017

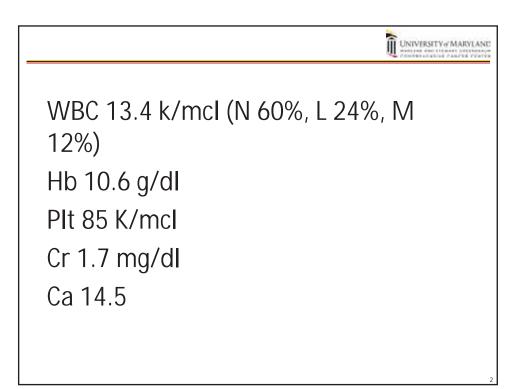


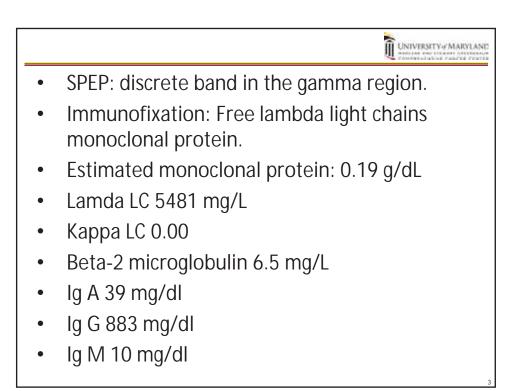


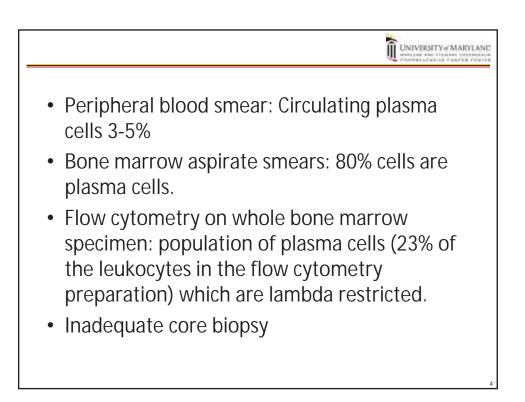


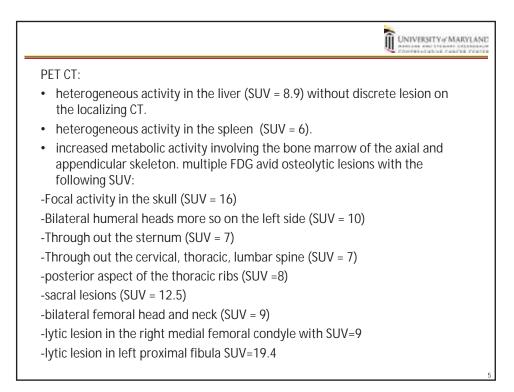


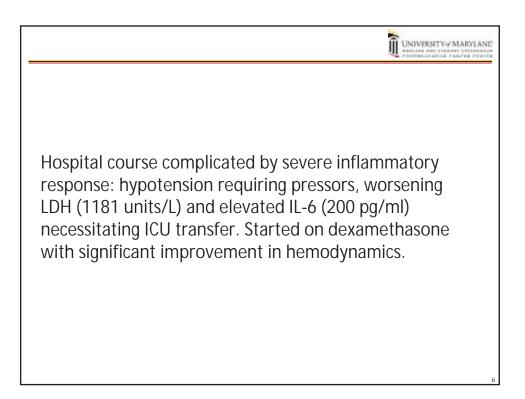


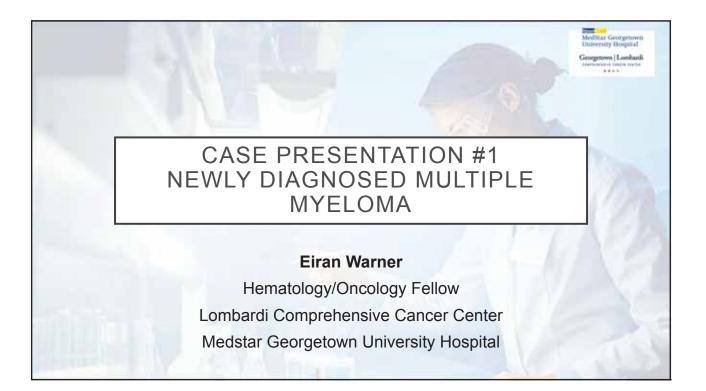

13


10/31/2017









Presenting History

- 53 year old Gentleman
- Several months of lower back pain
- Found with mild pancytopenia (Hb 11.4, platelets 123,000, MCV 104, ANC 1.58)

ab Work	
 CBC: WBC 3.9 k/uL, Hb 11.4 gm/dl, Platelets 136,000 k/uL BUN 14 mg/dl, Cr 0.91 mg/dl Ca 10.1 mg/dl Albumin 3.5. gm/dl Beta-2 microglobulin 3.7 mg Quantitative immunoglobulins: IgG 431 mg IgA 4005 mg IgM 13 mg 	 SPEP: 2.5 g/ dl Immunofixation: IgA Kappa Monoclonal Protein Serum Free Light Chain Assay: kappa 474.4 mg lambda 8 mg kappa/lambda 59.3

Bone Marrow Biopsy

- Hypercellular with 90% plasma cells
- + for CD138 and CD 56 but no expression of CD38 is noted
- Cytogenetics (FISH): 17P deletion, gain 1q

Imaging

- Skeletal survey : 2 small lucencies in the skull
- MRI of the lumbar spine showed a "cystic lesion" at S1-S2 and heterogeneous marrow signal with innumerable small lesions on 6/26/17
- PET CT: Recommended but not done

Case #1

Treatment Plan

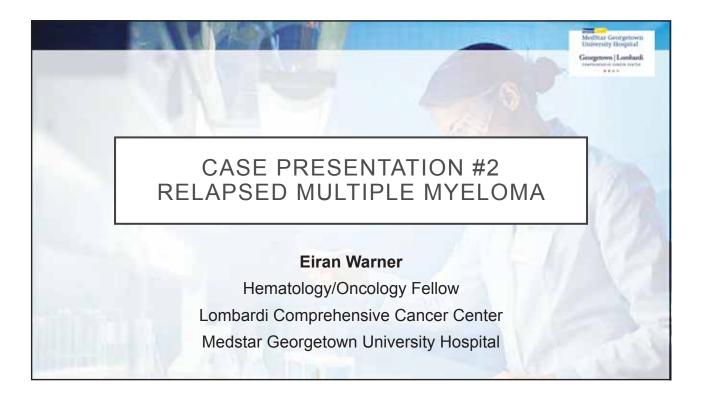
KRD

- Carfilzomib: days 1, 2, 8, 9, 15, and 16
 - Starting dose, 20 mg/m2 on days 1 and 2 of cycle 1; target dose, 36 mg/m2 thereafter
- Lenalidomide: 25 mg PO on days 1 through 21
- Dexamethasone: 40 mg PO days 1,2,8,9,15,16

After 1 Cycle

Case #1

Partial remission


• SPEP from 2.8 g to 0.8 g

Serum free kappa from 474 mg to 35.4 mg

Case #1

Question

How would you treat high risk Multiple Myeloma?

Presenting History

- 77 AA woman
- Hx of MGUS; evolved to stage III IgG Lambda MM in 2010
- FISH positive 14q32 deletion, but no 13q deletion or other cytogenetic abnormalities

Induction Treatment

Nine 6-week cycles of VMPT-VT:

- A. Bortezomib 1.3 mg/m2, d 1, 8, 15, 22
- B. Melphalan 9 mg/m2 d 1-4
- C. Prednisone 60 mg/m2, d 1-4
- D. Thalidomide 50 mg d 1-42

Case #2

Progression

- Velcade/Thal maintenance weekly
 - 11/2011- 2/2015 (DC'd due to progressive disease)
- Carfilzomib: 03/2015-02/2016
 - Developed progressive disease on single agent Carflizomib
- KRd: 02/2016-9/22/16
 - DC'd due to progressive disease
- KRCd: September 2016
 - Progressive disease after 1 cycle of KRCd
- Initiated ixazomib/pomalidomide/dexamethasone November 2016
 - Progressive disease after 1 cycle

Progression Continued

- Dara/Pom: Dec 2016-March 2017
 - Progressive disease after weekly Dara completed
- Dara/Pom/Carfilz/Dex: March 2017-August 2017 (Dara changed back to weekly)
- Carfilzomib/Bendamustine: September 12, 2017
 - Progressive disease after 1 cycle
- Cyclophosphamide 1 g/m²/etoposide 200 mg/m²
 - Progressive disease after 1 cycle

Case #2

Question

How would you treat relapsed refractory Multiple Myeloma?

Case 1

IMS educational workshop, Washington D.C.

Arjun Lakshman Research Fellow, Hematology Mayo Clinic, Rochester.

Initial presentation

- 63 years/ male with hypothyroidism and hyperlipidemia
- Back pain- May 2013

Hemoglobin	8.1 g/dL	M-protein	7.9 (IgA-kappa)
Calcium	9.5 mg/dL	Kappa/Lambda/FLCr (mg/dL)	9.1/0.3/32.4
Creatinine	1.5 mg/dL	Urine M-protein	27 mg/ 24 hours
PET-CT	Compression fractures involving multiple vertebrae and rib lesions	Albumin	3.2 g/dL
Bone marrow biopsy	80% (kappa-restricted)	Beta-2-microglobulin	8.1 mg/dL
Cytogenetics	Normal male karyotype	LDH	125
FISH	t(4;14), del(17p), monosomy 13	ECOG PS	1

Diagnosis

- Multiple myeloma (high-risk)
 - ISS/ R-ISS stage III
 - Durie-Salmon stage IIIA

• ECOG 1

Initial therapy

- Received Bortezomib-Lenalidomide-dexamethasone (VRd) with IV zoledronic acid.
- Attained PR after 4 cycles.
- December 2013- Underwent ASCT after carfilzomib-melphalan conditioning and attained a VGPR.
- Received CYBORD consolidation x 12 cycles (VGPR) followed by bortezomib maintenance.

Follow-up

• August 2015- Biochemical relapse while he was off therapy for 5 months (off therapy due to autoimmune encephalopathy).

What are the therapeutic options that can be considered at first relapse in this patient?

Follow-up

- August 2015- Restarted on CYBORD, but biochemical progression after 3 cycles.
- October 2015- Switched to carfilzomib-pomalidomide-dexamethasone to which he was refractory.
- January 2016- Started daratumumab-pomalidomide-dexamethasone in to which he did not have a response.

What treatment choices are available for this patient with high-risk RRMM?

Follow-up

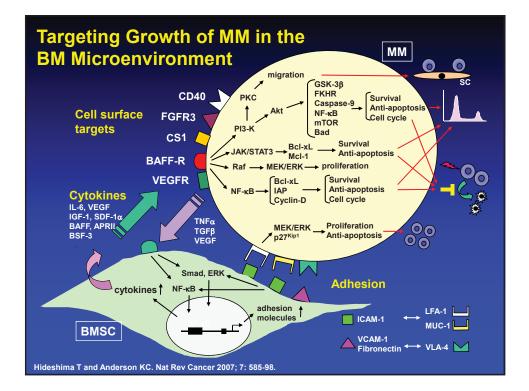
- March 2016- D-PACE x4 cycles- attained PR
- October 2016- Flu/Cy/TBI conditioning followed by allogeneic SCT from a haploidentical donor- no further deepening of response.
- March 2017- Progression and FISH showed persistence of original clone.

What therapeutic options are available?

Follow-up

- Contemplated pembrolizumab-pomalidomide dexamethasone (could not be started due to restrictions in insurance).
- April 2017- Started elotuzumab-pomalidomide-dexamethasone on which he progressed after 2 cycles.
- He failed bendamustine-lenalidomide-dexamethasone, and ixazomiblenalidomide-dexamethasone.
- Not deemed a candidate for clinical trials.
- Currently admitted in hospital with pneumonia.
- Will pursue hospice after discharge.

Future Targets and Therapy in Myeloma


Kenneth C. Anderson, M.D.

Jerome Lipper Multiple Myeloma Center Dana-Farber Cancer Institute Harvard Medical School

Kenneth C. Anderson, MD

- Advisory Board: Millennium-Takeda, and Gilead
- Scientific Founder: Oncopep, C4 Therapeutics

Integration of Novel Therapy Into Myeloma Management

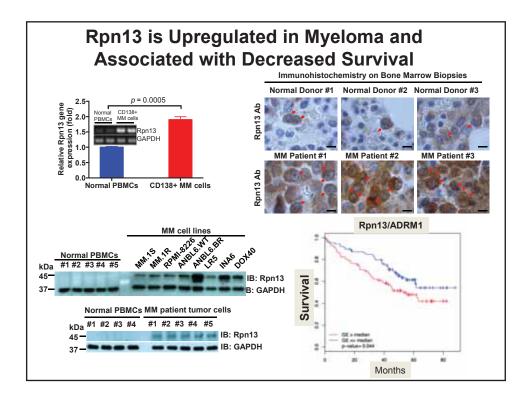
Proteasome inhibitors: Bortezomib, carfilzomib, ixazomib; immunomodulatory drugs: thalidomide, lenalidomide, pomalidomide; HDAC inhibitor: panobinostat; monoclonal antibodies: elotuzumab and daratumumab

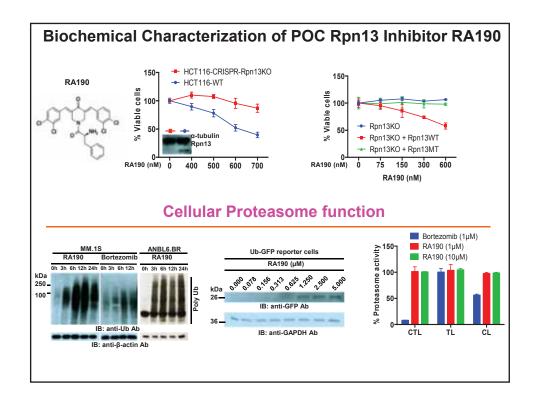
Target MM in the BM microenvironment, alone and in combination, to overcome conventional drug resistance *in vitro* and *in vivo*

Effective in relapsed/refractory, relapsed, induction, consolidation, and maintenance therapy

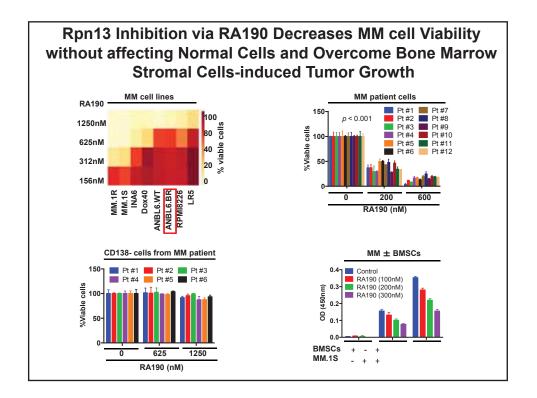
20 FDA approvals and median patient survival prolonged 3-4 fold, from 3 to 8-10 years.

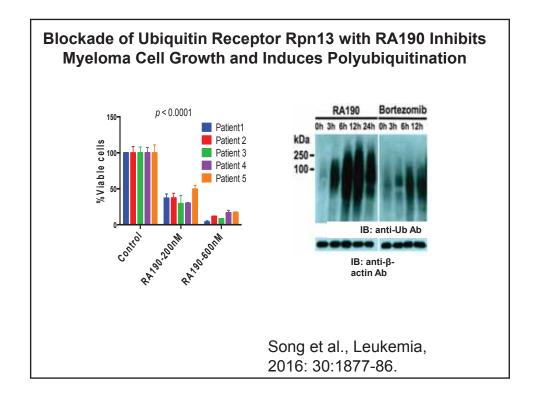
Targetting Hallmark Vulnerabilities (Achilles Heels) in MM

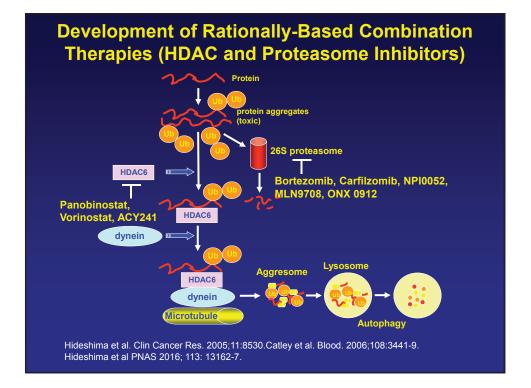

Modulate Protein Homeostasis: Target protein degradation Trigger selective protein degradation


Immune Suppression: Restore host anti-MM immunity

Genomic abnormalities:

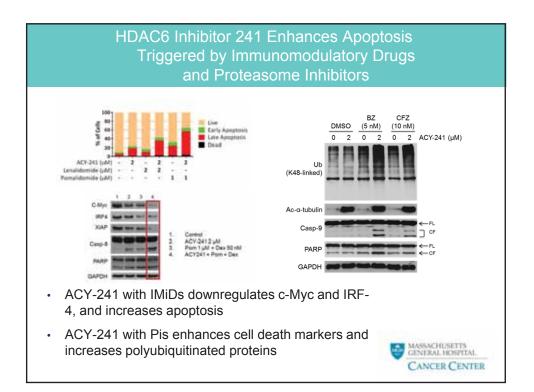

Target and overcome mechanisms of genomic instability, target genomic abnormalities and their sequelae

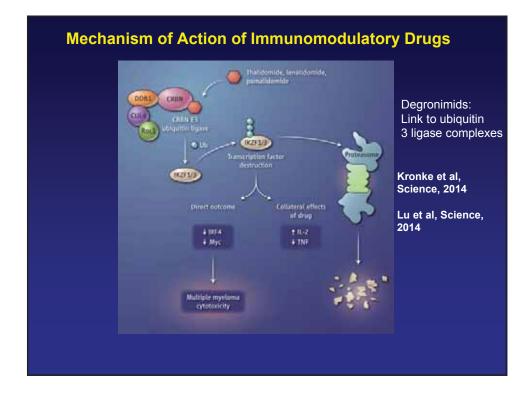


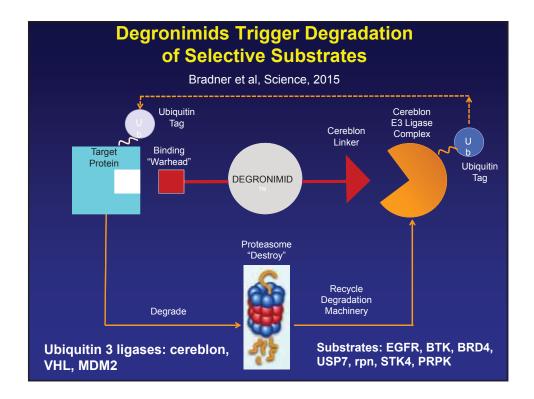


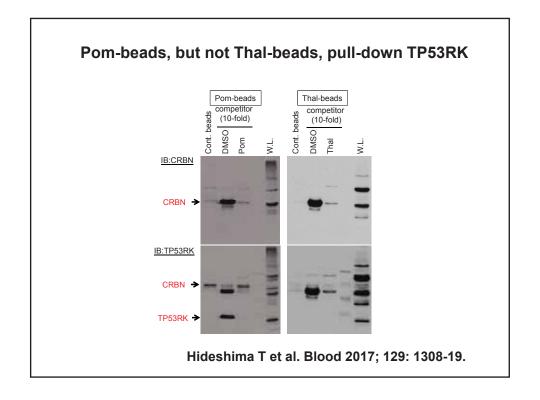
4

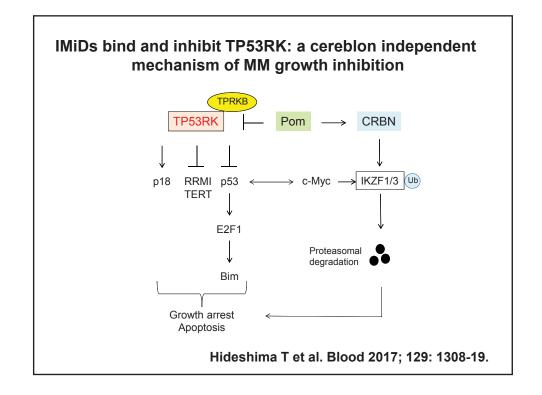
Selective Histone Deacetylase 6 Inhibitors Ricolinostat and ACY 241

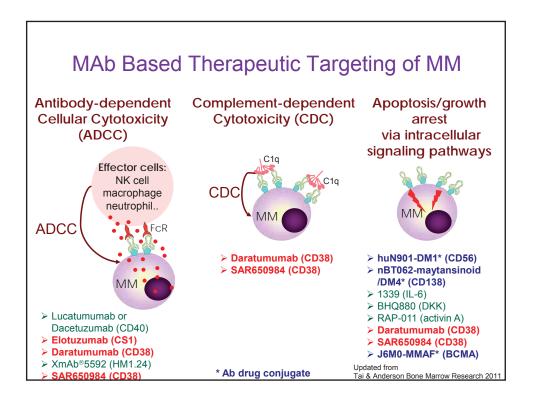

Synthesized and validated at DFCI

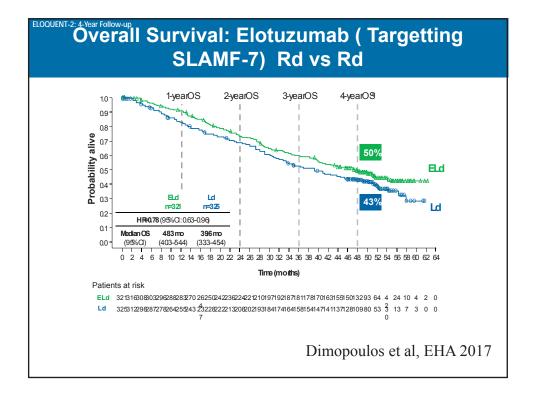

Well tolerated daily oral medication

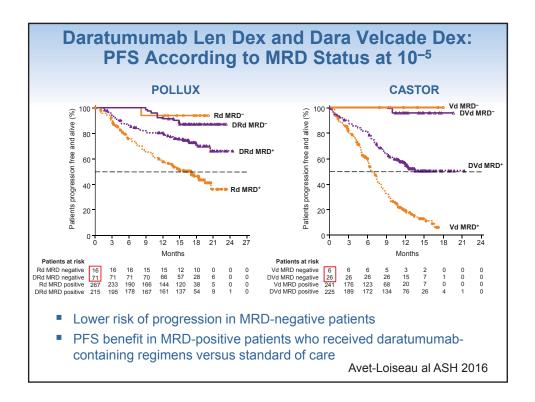

Achieves durable responses when combined with either bortezomib, lenalidomide or pomalidomide in relapsed refractory myeloma

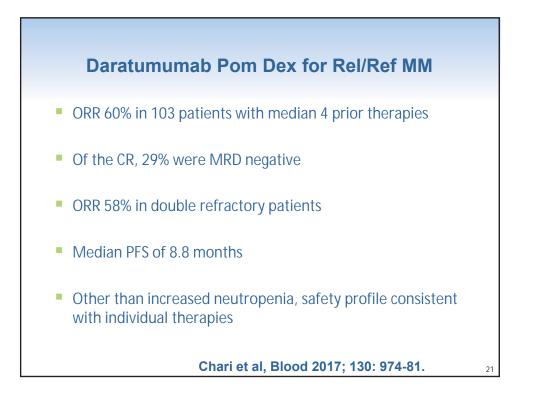

ACY 241 pom dex achieves improved PK/PD, tolerability, response and PFS in RRMM


Raje et al Blood 2012, Hideshima et al PNAS 2016, Yee et al Lancet Oncol 2016, Vogl et al CCR 2017



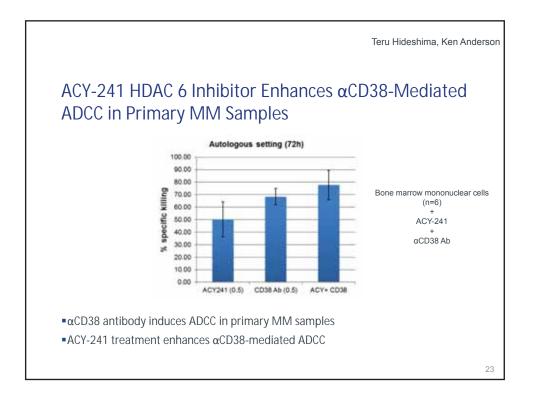


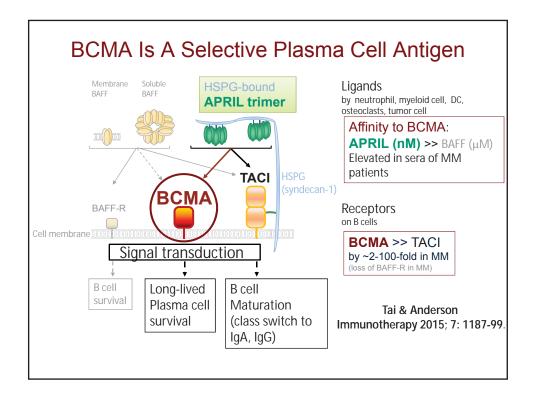


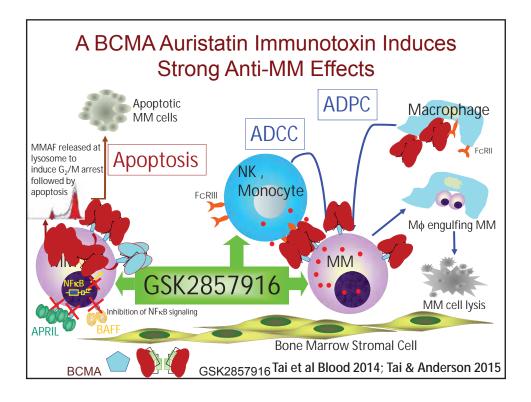


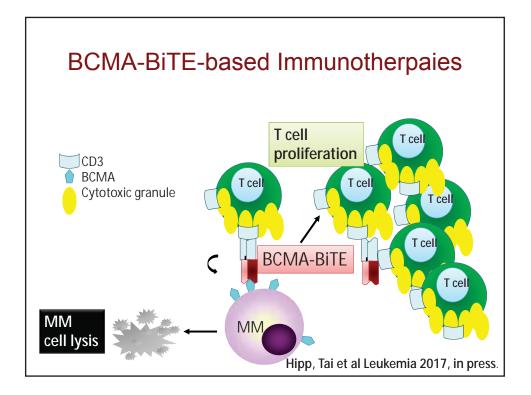
Immune Effects of HDAC6 Inhibitor ACY 241 in MM Therapy

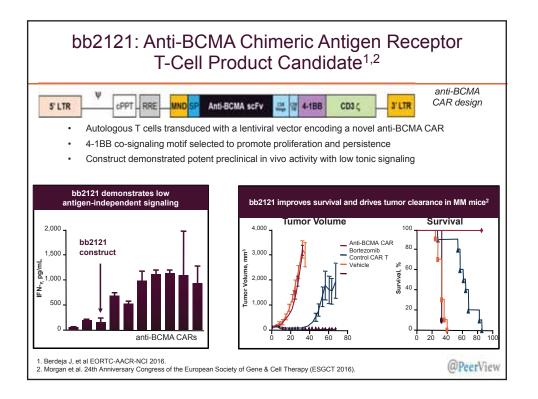
Augments HLA, CD38 on MM cells

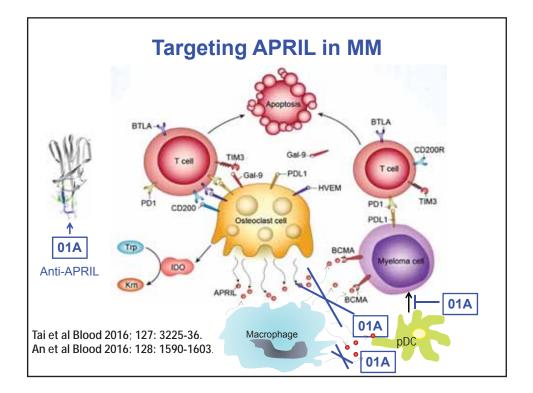

Augments autologous MM cell cytotoxicity alone, which is enhanced by pomalidomide, CD38 Ab and/or PD-1/PD-L1 Abs, even in the presence of MDSCs or pDCs

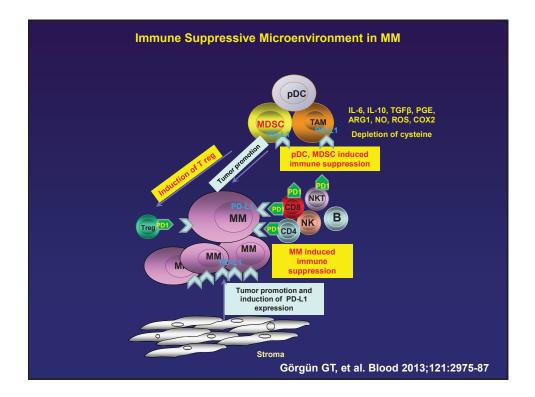

Augments NK cell function, alone and with PD-L1 Ab

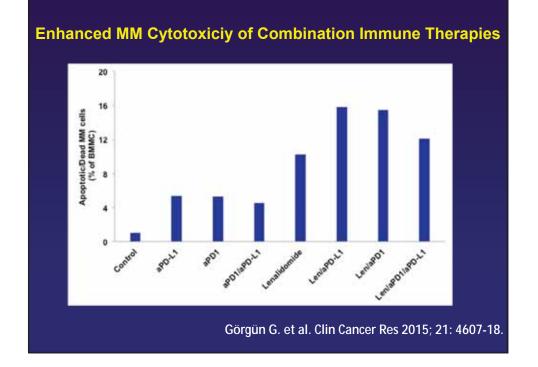

Augments autologous central and effector memory MM specific immunity



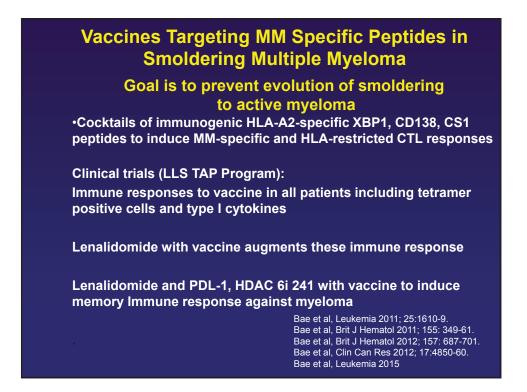

22

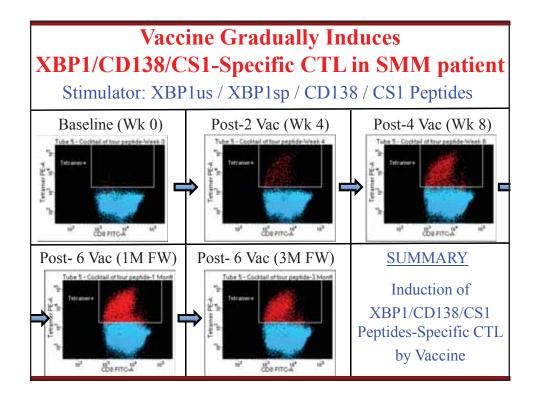


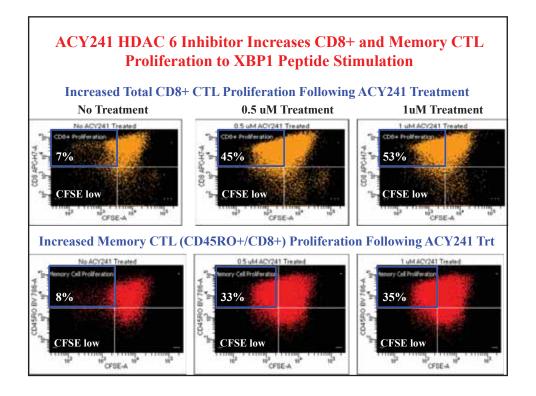


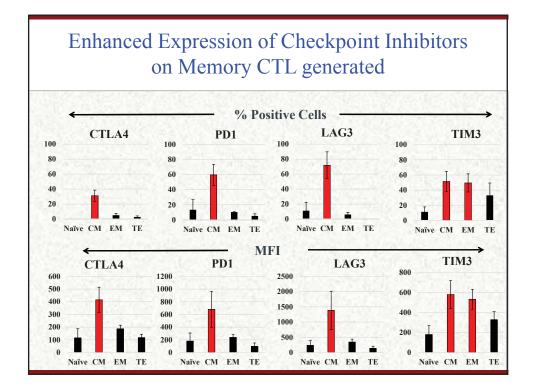


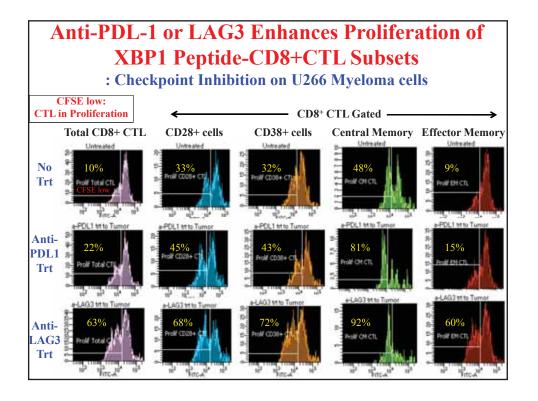
Group	CoSti m	Lymph o Dep	Cell Dose X 10 ⁶	No	ORR	≥CR	≥Gr 3 CRS / Neur o	Dea th	FU mo
NIH	CD28	Y	0.3-9*	12	4/12	1/1 2	2/0	0	nr
UP- Novartis	41bb	Ν	180- 500#	9	4/9	1/9	3/2	1	0.5- 12
Bluebir d	41bb	Y	50-800	18 +	15/18	3/1 8	2/0	2	0.5- 11
Legend	41bb	Y	0.6- 7*#*	19 +	19/19	14/ 19	2/0	0	0.5- 14

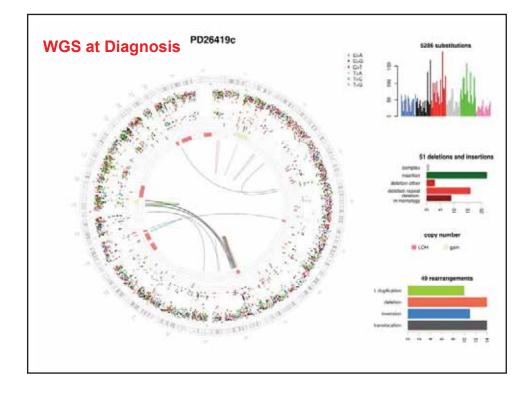


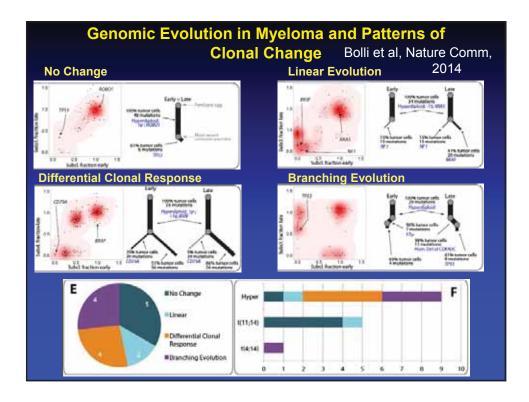


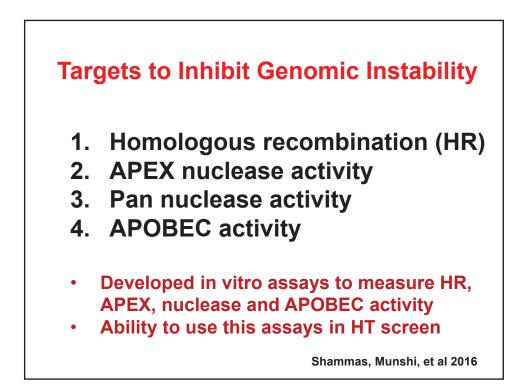

10/31/2017

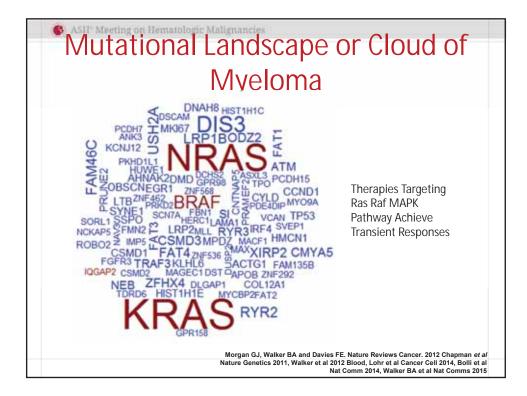


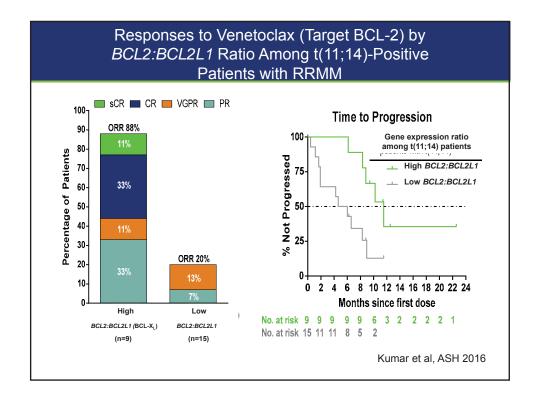

Pembrolizumab, Lenalidomide/Dex in RR MM Heavily pretreated RRMM (median 4 prior therapies); Acceptable safety profile ORR 50% and disease control (CR, PR, or SD) was 98% Heave 3 trials now underway Pembroluzumab Pomalidomide/Dex in RR MM Heavily pretreated RRMM (median of 3 prior therapies) ORR 56%; sCR 8%; VGPR 13%; PR 29% Median DOR: 8.8 months Double refractory ORR: 55% Mateos et al. Badros et a

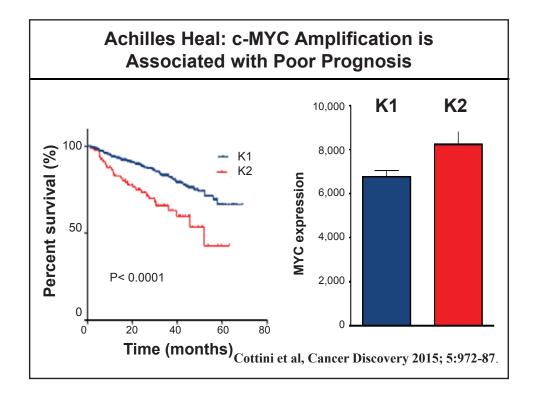


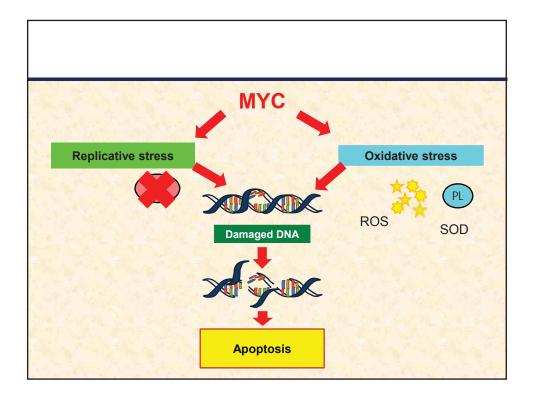


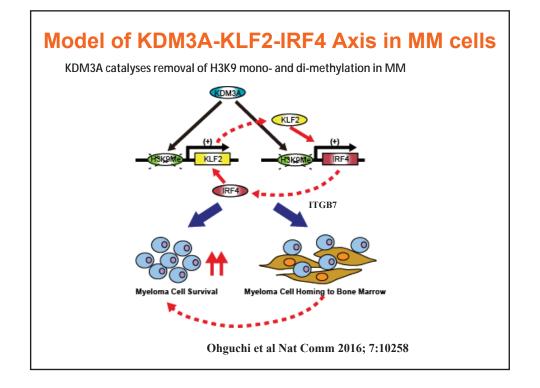


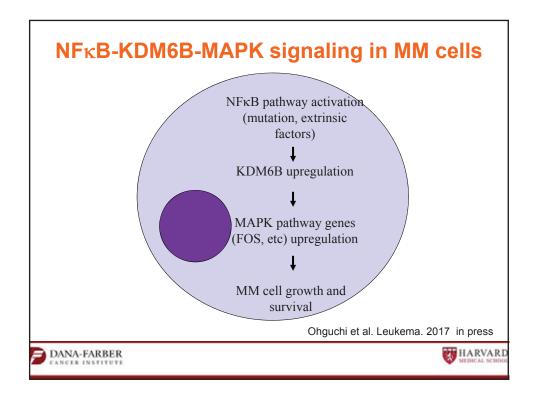












Targetting Hallmark Vulnerabilities (Achilles Heels) in MM

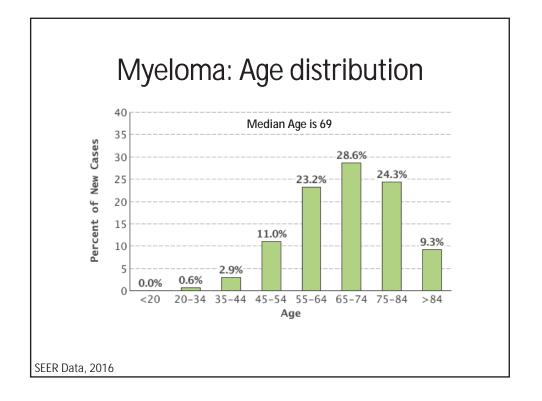
Modulate Protein Homeostasis: Target protein degradation Trigger selective protein degradation

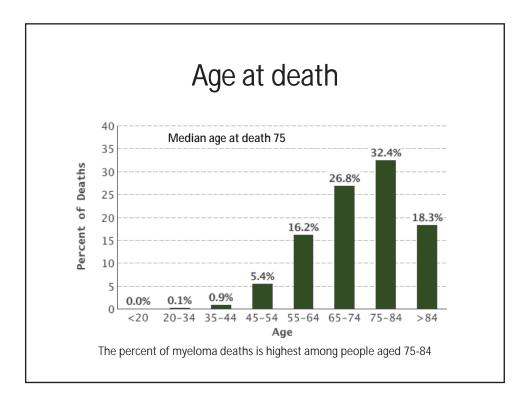
Immune Suppression: Restore host anti-MM immunity

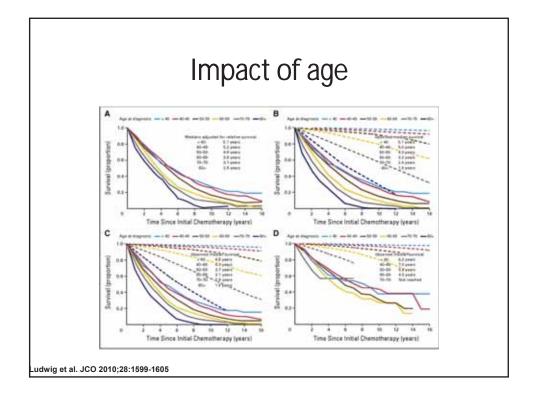
Genomic abnormalities:

Target and overcome mechanisms of genomic instability, target genomic abnormalities and their sequelae

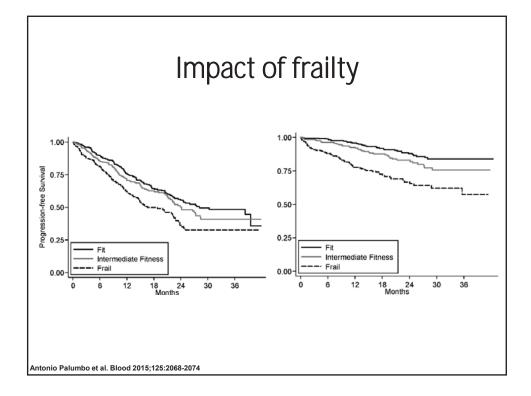
Conclusions and Future Directions

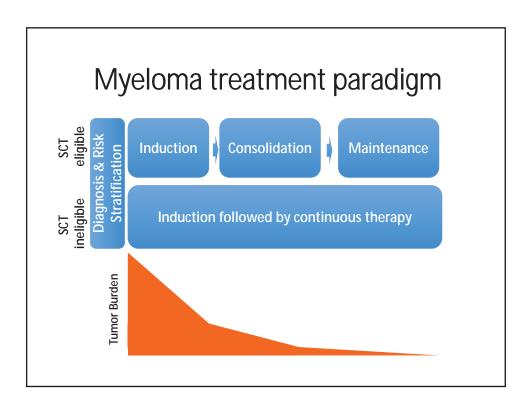

Combination therapies defined in preclinical studies will be used to treat subsets of patients, defined by profiling and informed by biomarkers

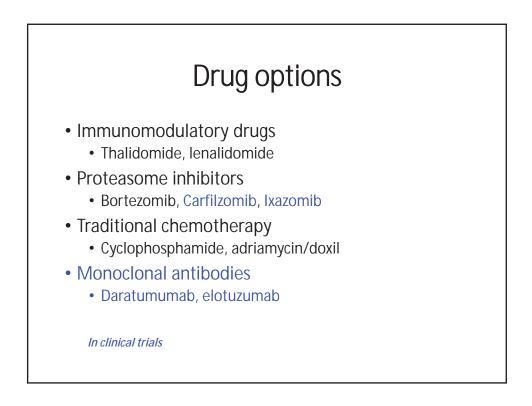

Collaborative effort of academia, biotech/pharma, NIH/NCI, FDA, and advocacy- International Myeloma Society-will facilitate continued advances.

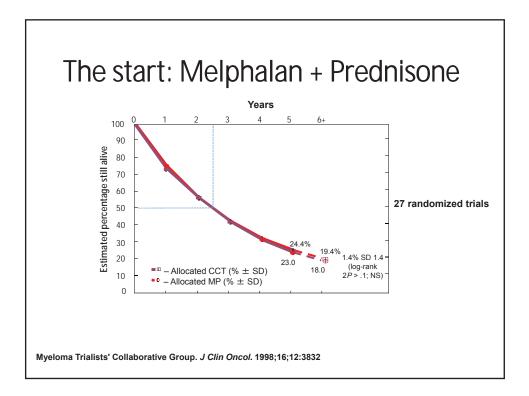

Long term disease free survival and potential cure of MM will require both 1. achieving minimal residual disease negativity, and 2. combined immune therapies to restore host immunity.

	Bon		Research Team	
	Kenneth Anderson		Teru Hideshima	
	Nikhil Munshi		Constantine Mitsiades Dharminder Chauhan	
	Paul Richardson		Noopur Raje	
	Robert Schlossman		Noopur Raje Yu-Tzu Tai	
	Irene Ghobrial Steven Treon		Ruben Carrasco	
	Jacob Laubach		James Bradner	Greece
USA	Deborah Doss	lanan	Gullu Gorgun	Oreece
USA	Kathleen Colson	Japan	Jooeun Bae	
	Mary McKenney		Francesca Cottini	
	Kim Noonan		Michele Cea	
	Tina Flaherty	and the second	Antonia Cagnetta	
	Kathleen Finn		Teresa Calimeri	
	Muriel Gannon	· ·	Edie Weller	Taiwan
	Stacey Chuma		Ajita Singh	Taiwan
UK	Janet Kunsman	Canada	Ze Tian	
UN	Diane Warren	Canada	Diana Cirstea	
	Carolyn Revta		Yiguo Hu	
-	Andrea Freeman		Naoya Mimura Jiro Minami	
	Alexis Fields		Sun-Yung Kong	
	Andrea Kolligian		Weihua Song	
	John Feather		Douglas McMillin	Tradeser
India	Farzana Masood	Commonie	Catriona Hayes	Turkey
India	Nora Loughney Heather Goddard	Germany	Steffen Klippel	
	Tiffany Poon		Jana Jakubikova	NIZ
	Nicole Stavitzski		Panisinee Lawasut	
	Raniit Banwait		Niels van de Donk	SILS
	Shawna Corman		Eugen Dhimolea	
	Heather Goddard		Jake Delmore	
	Meghan Marie Leahy		Hannah Jacobs	Australia
Italy	Caitlin O'Gallagher	Austria	Masood Shammas	
	Christina Tripsas		Mariateresa Fulciniti	
	Karin Anderson		Jianhong Lin	
	Shannon Viera		Jagannath Pal Samantha Pozzi	
XX	Katherine Redman		Loredana Santo	
	Amber Walsh		Claire Fabre	
	Samir Amin		Anui Mahindra	Ireland
Israel	Wanling Xie	China	Rao Prabhala	
	Parantu Shah		Jake Delmore	
	Holly Bartel		Puru Nanjappa	
	Lisa Popitz		Michael Sellito	
	Jeffrey Sorrell		Avani Vaishnav	

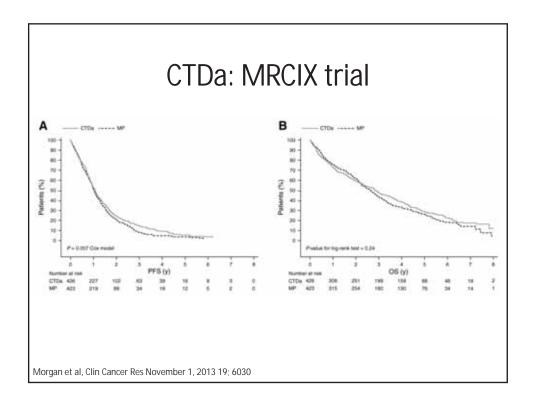


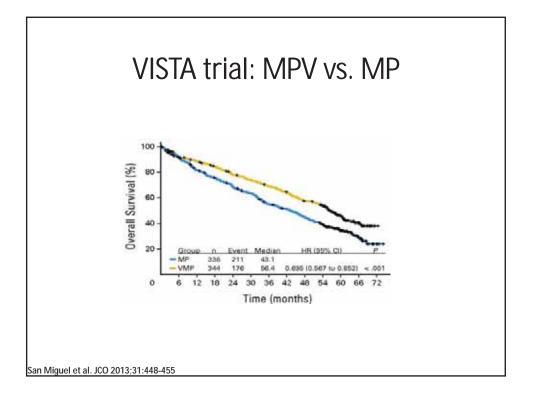


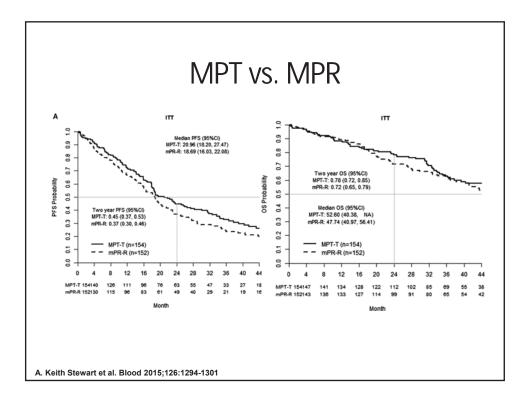

Why is age an important issue?

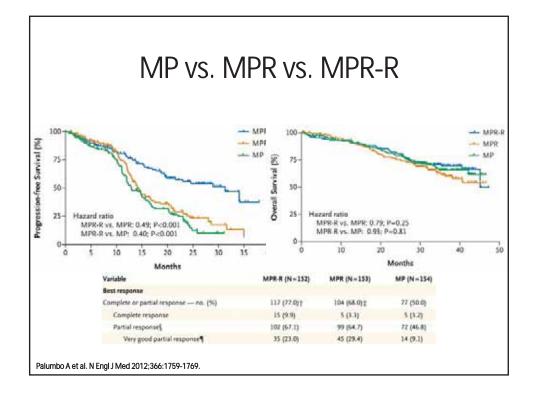

• Co-morbidities

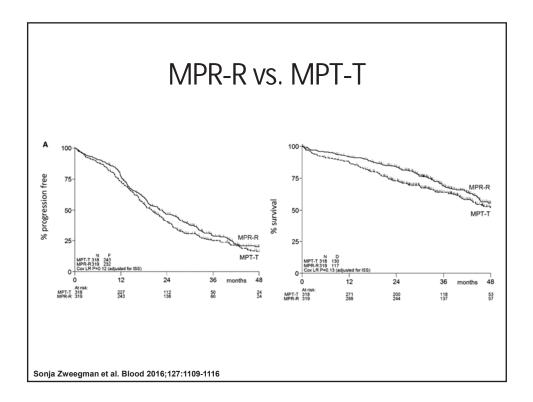
- Hypertension, Ischemic heart disease, Diabetes
- Renal insufficiency
- Osteoporosis
- Psychological issues
- Frailty
- Altered drug metabolism
- Limited social support, financial issues
- Limited independence/ mobility

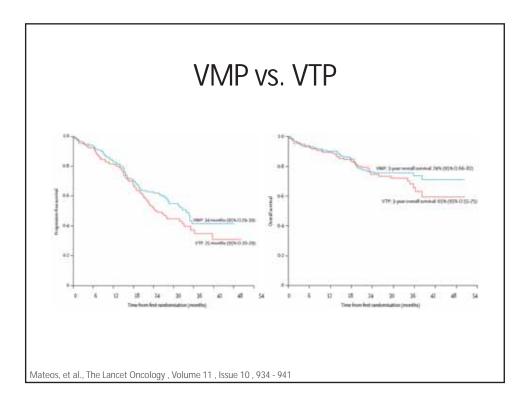


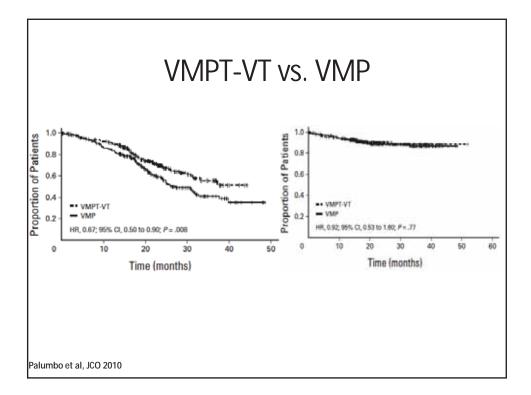


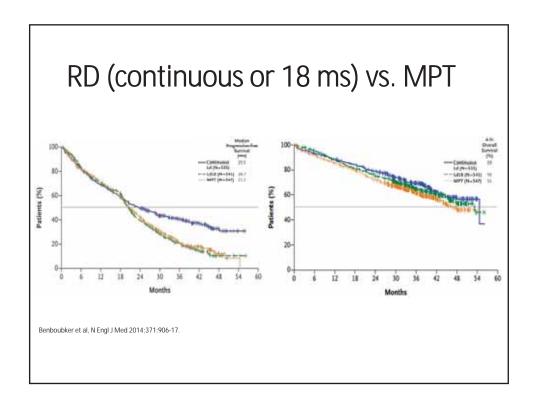


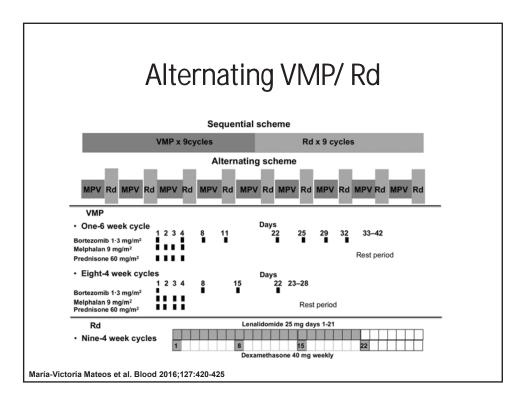


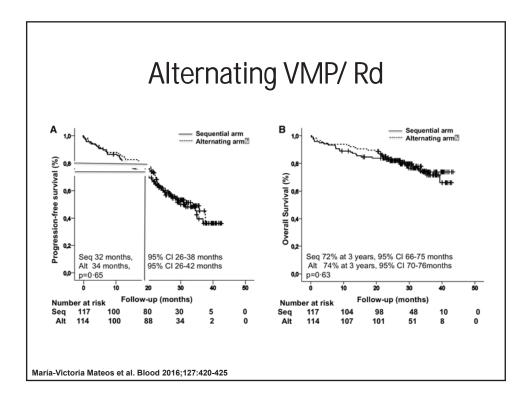

MP vs MPT								
	GIMEMA ^{1,2}	IFM 99-06 ³	IFM 01-01 ⁴	Nordic ⁵	HOVON ⁶			
Median PFS, months MP MPT	15 22	18 28	19 24	14 16	10* 13			
p value	0.0004	< 0.0001	0.001	TTP [‡]	< 0.001			
Median OS, months MP MPT	48 45	33 52	29 44	39 29	30 37			
p value	NS	0.0006	0.028	NS	NS			
* Event-free survival. * Significant. In 5 of 5 studies, MPT was superior to MP in terms of PFS or TTP (or both)								
In 2 of 5 studies, MPT was superior to MP in terms of OS								
1. Palumbo A, et al. Lancet. 2006;111:825-31. 2. Palumbo A, et al. Blood. 2008;112:3107-14. 3. Facon T, et al. Lancet. 2007;370:1209-18. 4. Hulin C, et al. J Clin Oncol. 2009; in press. 5. Waage A, et al. Blood. 2007;110:[abstract 78]. 6. Wijermans P, et al. Blood. 2008;112:[abstract 241]; updated data presented at ASH, 2008.								

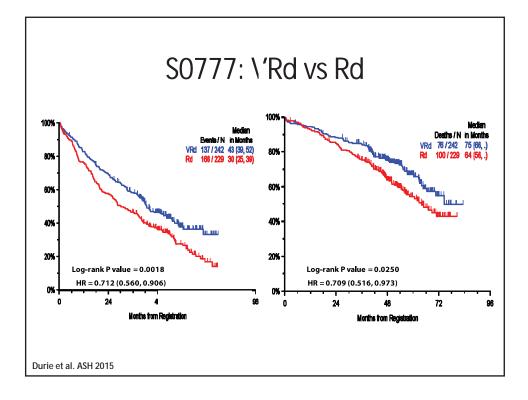


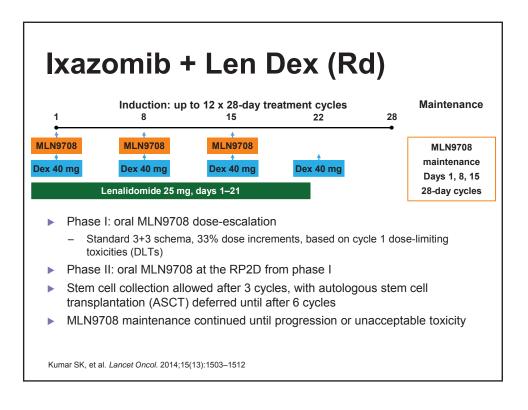


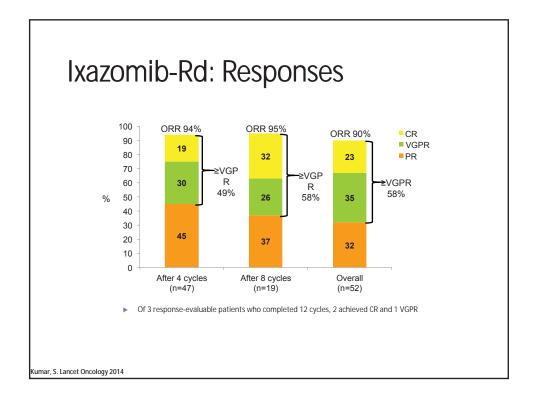

Bendamustine/prednisone (BP) vs MP

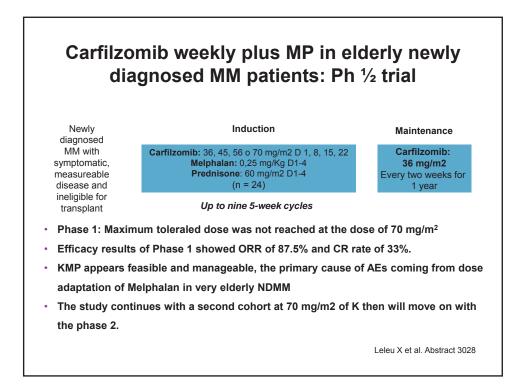

ORR (%)	7	75		0	nc
		75		-	ns
CR (%)	3	32		3	0.007
PR (%)	4	43		7	ns
PFS in >65 years (months)*	1	8	1	1	0.0017
Adverse events	Gr 3	Gr 4	Gr 3	Gr 4	
Neutropenia (%)	28	12	25	6	n/a
Thrombocytopenia (%)	6	4	10	5	n/a
Anemia (%)	21	3	21	3	n/a
Infection (%)	10	2	10	2	n/a
Mucositis (%)	4	0	2	0	n/a
	12	0	0	0	n/a


Pönisch et al. J Cancer Res Clin Oncol 2006;132(4):205-12

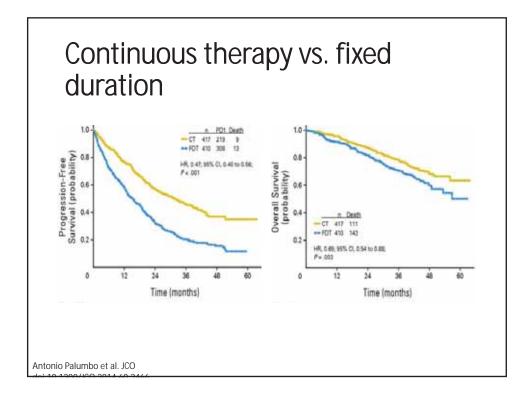


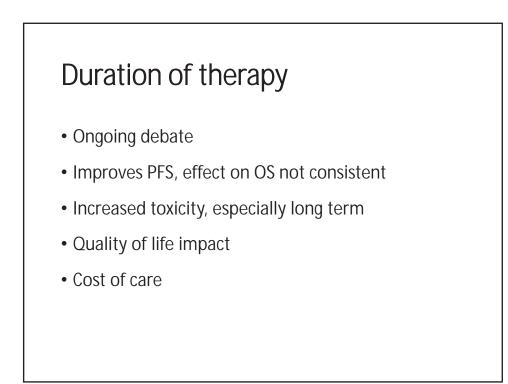






RVD	lite							
35-day cycle. Lenalidomide 15 days 1-21; bortezomib 1.3 mg/m2 once weekly subcutaneously days 1, 8, 15, and 22; and dexamethasone 20 mg on days 1, 2, 8, 9, 15, 16, 22 and 23 for pts ≤75 yrs and days 1, 8, 15, 22 for pts older than 75 yrs.								
Response after 4 cycles (%) (n=30)								
ORR (≥PR)								
CR	5 (16.7)							
VGPR	11 (36.7)							
PR	11 (36.7)							
SD	3 (10.0)							
VGPR or better	16 (53.3)							
	IMWG Criteria; ORR, overall response rate; CR, complete response; PR, partial response; SD, stable disease; VGPR, very good PR							
O'Donnell et al, ASH 2014								



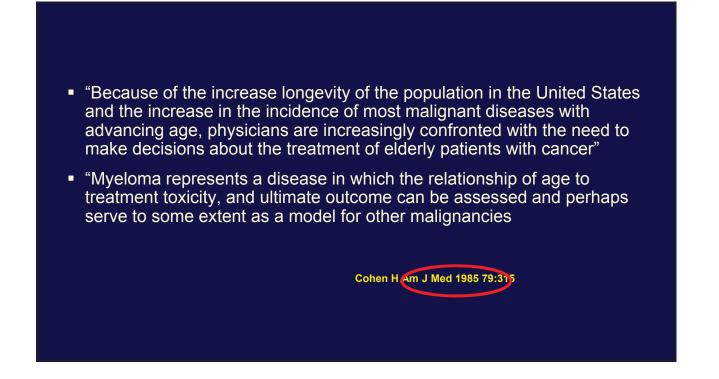


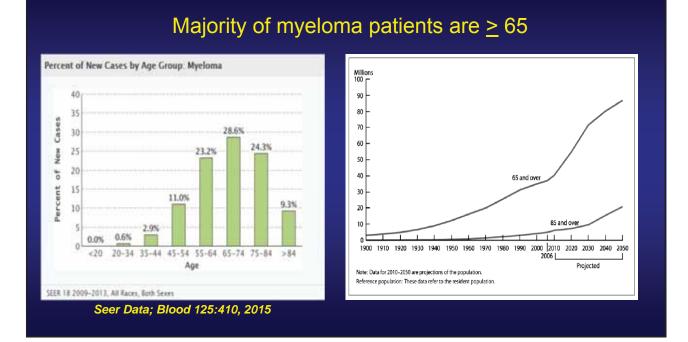
Carfilzomib weekly plus Cyclo-dex in elderly newly diagnosed MM patients: Ph ½ trial

The	phase 1 of the stud	ly identified	d 70 mg/m²	as M1	D	
Newly diagnosed	Induction				Maintenance	
MM with symptomatic, measureable disease and	Carfilzomib: 70 mg/m2 D 1, 8, 15, 22 Cyclophosphamide: 300 mg/m2 D1, 8, 15 Dexamethasone: 40mg D1, 8, 15 and 22 (n = 47)			Carfilzomib: 70mg/m2 D1, 8, 15 until DP or toxicity		
ineligible for transplant	Up to nine 4-week cycles					
At least near Com At least Very Good At least Partial Res	Efficacy Complete Response At least near Complete Response At least Very Good Partial Response At least Partial Response Safety profile: Acute pulmonar edema			26% 39% 82% 87% perten	9th cycle 33% 40% 87% 87% sion in 6 pts (15%)	
					Bringhen S: Abstract 1828	

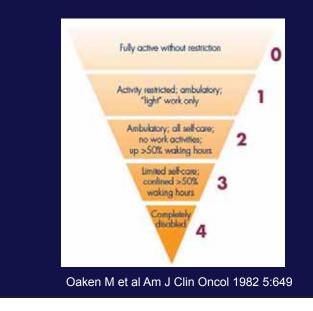
		Risk factors	
	Age over 75 years Mid, moderate or severy frail parients needing help for h Contribution: canduc dysfunction palmonary dysfunction hepatic dysfunction neula dysfunction		
	60-60	MODERATE-GO	MLOW-GO
	DOSE LEVEL 0	At load one risk factor OOSELEVEL +1	At load one risk factor pion securities of grade 3-4 non- hermologic AE DOSE LEVEL ~2
Agent	DOSE LEVEL 0	DOSE LEVEL -1	DOSE LEVEL -2
Dexamethasone	40 mg/d	20 mg/d	10 mg/d
	d 1.8.15.22 / 4 wks	d 1,8,15,22 / 4 wka	d 1,8,15,22/4 wks
Melphalan	0.25 mg/kg or 9 mg/m ²	0.18 mg/kg or 7.5 mg/m ²	0.13 mgAg or 5 mg/m ²
	d 1-4/4-6 wks	d 1-4 / 4-6 wks	d 1-4 / 4-6 wks
Thalidomide	100 mg/d	50 mg/d	50 mg qod
Lenalidomide	25 mg/d	15 mg/d	10 mg/d
	d 1-21/4 wks	d 1-21 / 4 wks	d 1-21 / 4 wks
Bonezomib	1.3 mg/m² twice weekly	1.3 mg/m ² once weekly	1.0 mg/m ² once weekly
	d 1.4.8,11 / 3 wks	d 1.8,15,22 / 5 wks	d 1.8,15,22/5 wks
Prednisone	60 mg/m² d 1-4 or	30 mg/m² d 1-4 or	15 mg/m² d 1-4 or
	50 mg qod	25 mg qod	12.5 mg qod
Cyclophosphamide	100 mg/d	50 mg/d	50 mg qod
	d1-21/ 4 wks or	d 1-21/4 wks or	d 1-21 / 4 wks or
	300 mg/m ³ /d	150 mg/m ² /d	75 mg/m ² /d
	d 1,8,15 / 4 wks	D 1.8,15/4 wks	d 1.8.15 / 4 wks

Conclusions


- Ideal initial treatment is the combination of a proteasome inhibitor and an IMiD
- In older patients, frail patients, Len-Dex is a reasonable choice
- Dose modifications should be done based on patient age and frailty
- Maintenance therapy is particularly relevant in patients with high risk disease and those with residual disease


HOW DO WE USE THE FRAILTY SCORE IN THE ELDERLY?

Natalie S. Callander, MD


Elderly pts (older than 75 y. o.) make up more than 40% of newly diagnosed patients with myeloma; more than 60% of newly diagnosed pts ≥ 65 y. o.

- Tolerance of certain therapies is lower, but frailty is likely a more important determinant of response and toxicity than chronological age
- Elderly pts may have lower rate of unfavorable cytogenetics and other high risk features
- Survival still seems to be inferior to younger patients; possibly due to less frequent use of newer and more effective agents (e.g. Schaapveld Eur J Can 2010;46;160)
- Underrepresented in clinical trials so most recommendations are extrapolated

Many known risk factors for worse outcome in Myeloma, including:

- Cytogenetic/FISH risk
- Renal impairment
- Stage III disease
- Elevated Beta-2-microglobulin
- Frailty?
- Frailty often defined as progressive decrease in physiologic reserve that results in an increased risk of physical and cognitive disability in the face of stressors
- Is frailty the same as performance status? <u>What defines a frail</u> <u>myeloma patient?</u>

LIMITATIONS OF PHYSICIAN REPORTED ECOG PS

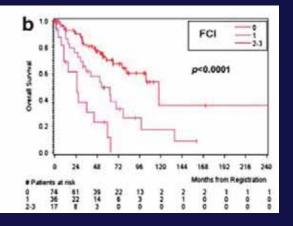
- Physicians tend to overestimate PS
- Patient reported vs Physician assessed ECOG PS concordant only 50% of the time
- 92% of patients who described themselves as ECOG 2 were rated 1 by their physician
- Blagden SP Br J Canc 2003 89:1022

OTHER WIDELY USED SCALES FARE NO BETTER

Performance status

Kamofsky Scale	Zubrod Scale		
Normal, no evidence of disease Able to perform normal activity with only minor symptoms	100 90	Normal activity	0
Normal activity with effort, some symptoms Able to care for self but unable to do normal activities	80 70	Symptomatic and ambulatory Cares for self	1
Requires occasional assistance, cares for most needs Requires considerable assistance	60 50	Ambulatory >50% of time Occasional assistance	2
Disabled, requires special assistance Severely disabled	40 30	Ambulatory ≤50% of the time Nursing care needed	3
Very sick, requires active supportive treatment Monbund	20 10	Bedridden	4

Analysis of 1636 pts Enrolled on clinical trials Through NCCTG Pts and providers disagreed >50%; physicians overrate


Zubrod J Chron Ds 1960 11:71; Karnofsky D Cancer 1948 1:634; Schnadig I Cancer 2008; 113:2205

"Eyeball test" likely very inaccurate

Widespread agreement to focus on function using easy to replicate measures that should have relatively easy answers:

Which is the best frailty scale(s) to use for the evaluation of myeloma patients?

- Freiburg Comorbidity Score (FCI)- evaluated age, HTN, cardiac disease, additional malignancy, hepatic, renal disease, pain, diabetes
- 3 factors significantly tied to OS
 - eGFR <30ml/min
 - Mod/severe impaired lung function
 - KPS <u><</u>70%

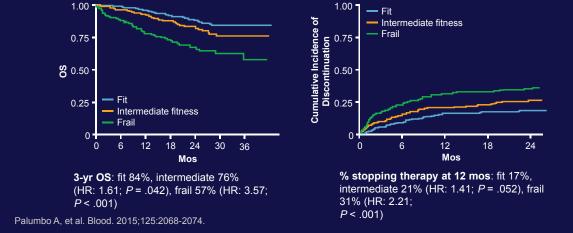
Kleber M Blood Can J 2011 1: e35

Scales that combines ADLs and medical illness may be more useful

- Activities of Daily Living
 - Locomotion and travelling
 - Dressing
 - Toileting
 - Eating
 - Climbing stairs
 - Mouth care

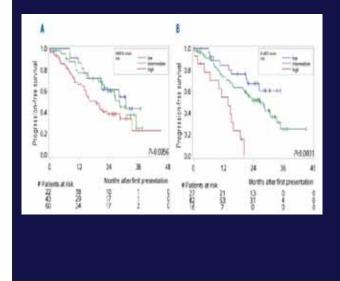
- Instrumental Activities of Daily Living-includes all on left
 - Shopping
 - Cooking
 - Housekeeping
 - Laundry
 - Medication management, money management
 - Use of telephone

Lawton Gerontol 1969 3: 179


Katz W J Am Ger Soc 1983 31:721

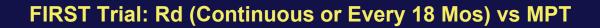
Age-adjusted Charlson Comorbidity Index (aaCCI)

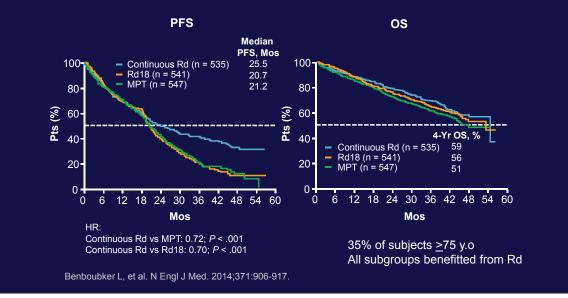
- Age >50 (each decade adds 1 point
- AIDS (6 points)
- Major medical illness (2 points)
- Liver disease (3 points)
- Other medical illness- diabetes, mild COPD, CHF (1 point)
- Higher the score, more likely to experience therapy and illness related complications

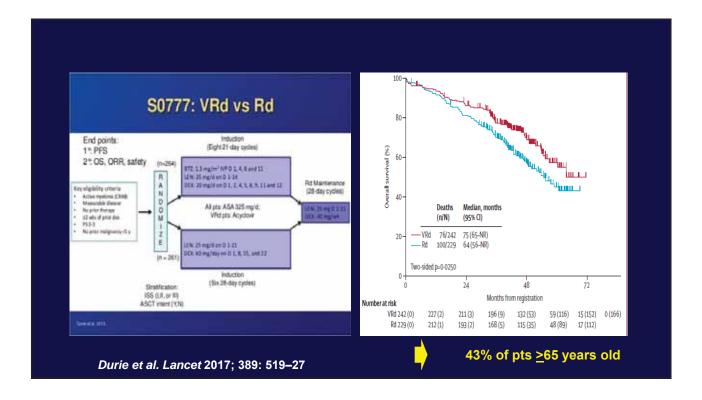

Charlson M J Clin Epidem 1994 47:1245

- German myeloma group validated and refined IMWG score, R-MCI sore
 - Combines IMWG score with elements of FCI, CCI,
 - Includes age, cytogenetics, frailty, hepatic, cardiac, disability, infection, pain, peripheral neuropathy and secondary malignancy
 - 13 areas; 39 total items assessed
 - Divided pts into 3 risk groups: low, intermediate, high

Englehardt M Haematol 101: 1110, 2016

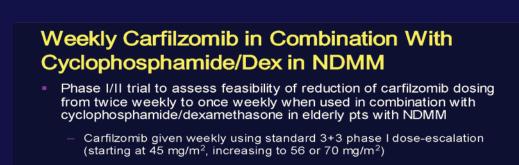

- R-MCI showed better discrimination than IMWG for progression free survival
- LIMITATIONS:
 - Much more cumbersome to use than IMWG


Online version of IMWG Frailty score: www.myelomafrailtyscorecalculator.net

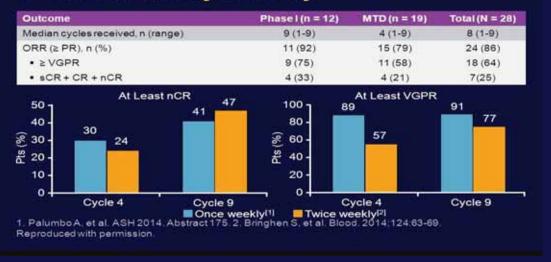

		General and and a second se
BATE OF BERTH	I R	
	Charlese Nove	
	Attal	
	Conference de deser	
	Orner advances from	
	Domastics hand failers"	
	Committee Danse danses"	
	Descent of the second se	
	mandad	
Consultativy unless and tuning of Charleses at al	Loutense"	
	Halamat Areahang	
	Management and and and the "	
	Parisheral speaker down	
	Har danse	
	Entries, and the	
	Advect diseases	
	Annal discourt	
	Malapart rold tarms"	
	BADL Baser	
	Rollins / monar balls ball halls or abover!	
	part of last;	
	Dress to a	
	Note distant and distance or Post any wantiment	
	parametric for twines whereas	

Suggested Age-Adjusted Dose Reduction in Patients with Multiple Myeloma.

24VE	Age <65 Yr	Age 65-75 Yr	Age >75 Yr
Dexamethasone	Dose of 40 mg/day given analy on days 1-4, 15-18 every 4 wk; or 40 mg/day given orally on days 1, 8, 15, 22 every 4 wk ¹⁴	Dose of 40 ing/day given orally on days 1, 8, 15, 22 every 4 wk ¹⁴	Dose of 20 mg/day given orally on days 1, 8, 15, 22 every 4 wh ^m
Melphalan	Dose of 0.25 mg/kg given orally on days 1–4 every 6 wk**	Dane of 0.25 mg/kg given orally on days 1-4 every 6 wk ⁴¹ ; or 0.18 mg/kg given (nally on days 1-4 every 4 wk ⁴¹	Dose of 0.18 mg/kg given orally on days 1-4 every 6 wk, or 0.13 mg/kg given orally on days 1-4 every 4 wk
Cyclephosphamide	Dase of 300 mg/m ² given orally on days 1, 8, 15, 22 every 4 wk ²⁰	Dase of 300 mg/m ² given scally on days 1, 8, 13, every 4 wk ⁴¹ , or 50 mg/day given orally on days 1–21 every 4 wk	Dese of 50 mg/day given anal- hron days 1-21 every 4 ak, or 50 mg every other day given orally on days 1-21 every 4 wk
Thalidomide	Dose of 200 mg/day given orally continuously ^{67,69}	Dose of 100 mg/day ⁶⁶ or 200 mg/day ^{67,69} given orally continuously	Dose of 50 mg/day ⁴³ to 100 mg/day ^{46,70} given orally continuously
Lenalidomide	Dose of 25 mg/day given orally on days 1–21 every 4 wk ^{54,81,82}	Dose of 15–25 mg/day given orally on days 1–21 every 4 wk ^{54,81,82}	Dose of 10–25 mg/day given orally on days 1–21 every 4 wk ^{54,81,82}
Bortezomib	Dose of 1.3 mg/m ² given as bolus intravenous infusion on days 1, 4, 8, 11 every 3 wk ^{73,79}	Dose of 1.3 mg/m ² given as bo- lus intravenous infusion on days 1, 4, 8, 11 every 3 wk ^{73,79} ; or 1.3 mg/m ² given as bolus intravenous infusion on days 1, 8, 15, 22 every 5 wk ⁷⁶	Dose of 1.0–1.3 mg/m ² given as bolus intravenous infu- sion on days 1, 8, 15, 22 every 5 wk ⁷⁶



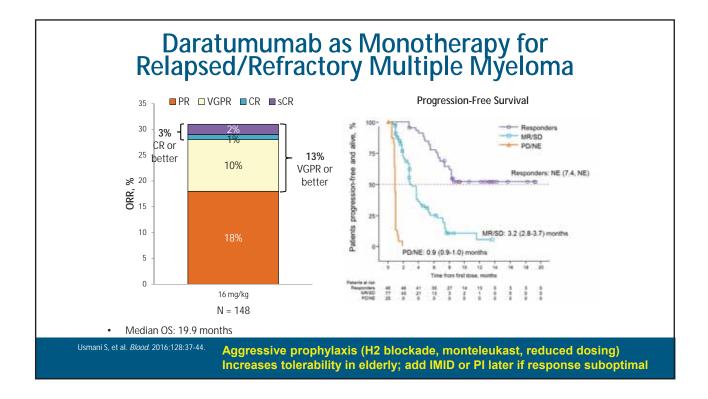
Modified Lenalidomide/Bortezomib/ Dexamethasone in ASCT-Ineligible Pts

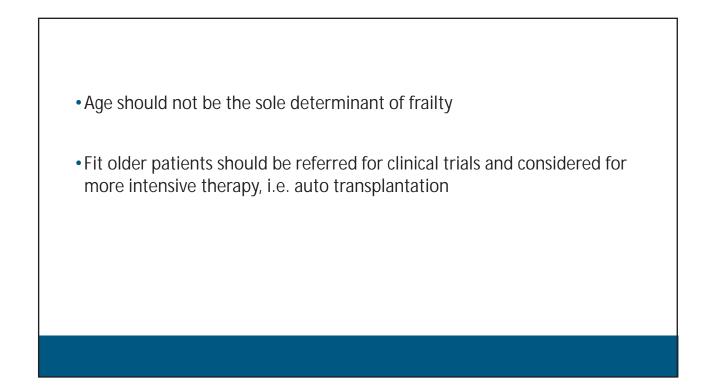

- Phase II trial exploring utility of modified VRd (VRd lite); N = 53
 - Lenalidomide: single daily PO dose of 15 mg on Days 1-21
 - Bortezomib: 1.3 mg/m² SC once weekly on Days 1, 8, 15, 22
 - Dexamethasone: 20 mg 2x weekly if \leq 75 yrs or 1x weekly if > 75 yrs
- VRd lite resulted in 90% ORR (≥ PR), ≥ VGPR: 60%
 - 5 pts d/c after < 4 cycles: worsening adrenal insufficiency (n = 1), lenbased rash (n = 1), investigator discretion (n = 1), travel distance (n = 2)
- AEs manageable and well tolerated in an older population
 - Grade \geq 3 AEs: hypophosphatemia (31%), rash (10%)

O'Donnell EK, et al. ASH 2015. Abstract 4217.

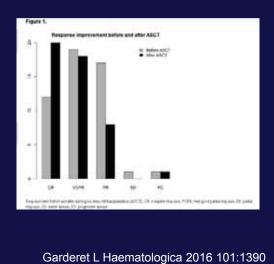
- Phase I data (n = 12) identified MTD as 70 mg/m²
 - 3 of 12 pts in phase I portion received MTD
- Phase II cohort currently enrolling
 - 18 pts included in current analysis
- Similar baseline characteristics across all pts in phase I and II cohorts, with 30% of pts aged ≥ 75 yrs and 33% with unfavorable cytogenetics

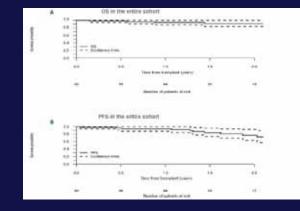
Weekly Carfilzomib + Cyclophosphamide/ Dex: Preliminary Efficacy

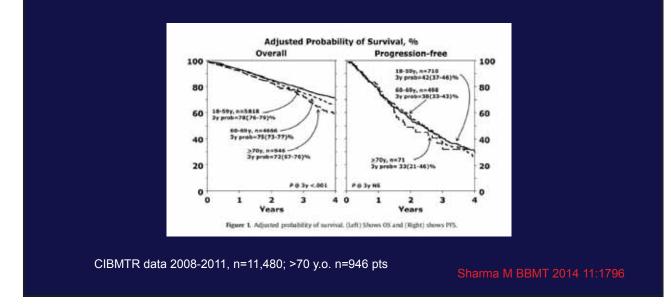

Phase II Trial of All-Oral Ixazomib/ Cyclophosphamide/Dexamethasone in R/R MM


Confirmed Best Response, n (%)	All Pts (N = 73)*	Pts < 65 Yrs (n = 37)	Pts ≥ 65 Yrs (n =36)
ORR (CR + VGPR + PR)	35 (48)	12 (32)	23 (64)
CR + VGPR	12 (16)	3 (8)	9 (25)
CR	2 (3)	1 (3)	1 (3)
VGPR	10 (14)	2 (5)	8 (22)
PR	23 (32)	9 (25)	14 (39)
SD	28 (38)	19 (51)	9 (25)
PD	7 (10)	5 (14)	2 (6)

- Higher ORR (64% vs 32%) and higher CR + VGPR rate (25% vs 16%) in pts aged ≥ 65 vs < 65 yrs
- Median TTR : 1.9 mos
 - In pts aged < 65 vs
 ≥ 65 yrs: 1.9 vs 2.3 mos
- Median DoR: NR, with DoR up to 17 mos

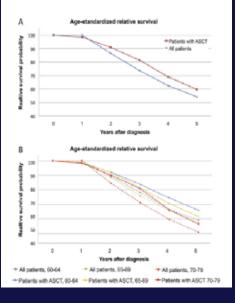

Kumar S, et al. ASH 2016. Abstract 3327.


Slide credit: clinicaloptions.com

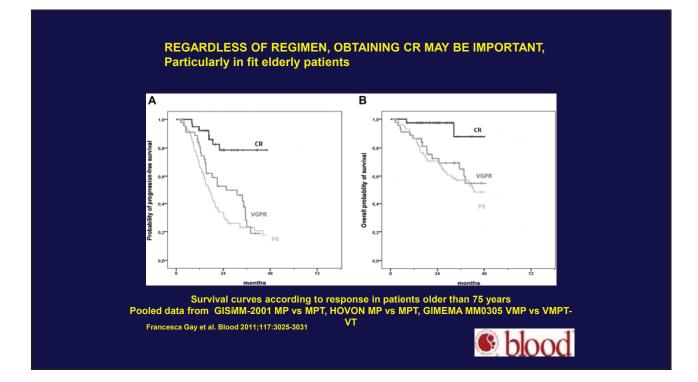


Auto PBSCT also improves survival and response rate in elderly patients

Comparable PFS and OS post auto PBSCT in pts > 70


Auto PBSCT for elderly MM pts

Merz et al analyzed survival of 3591 pts aged 60-79 yrs who received auto BMT between 1998-2011 within 12 mo of dix

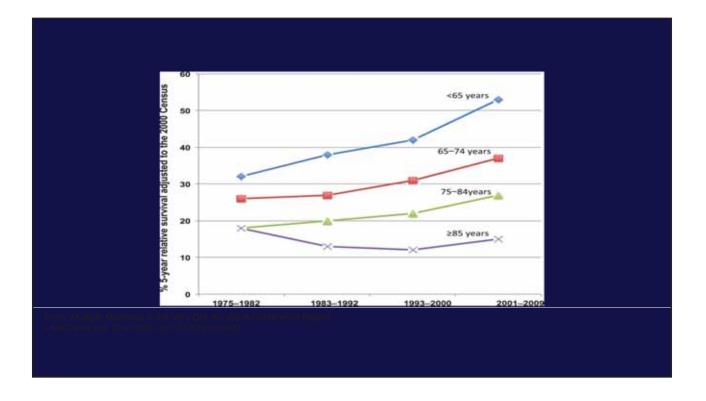

Compared to 13903 pts newly diagnosed with MM during the same period

All patients benefitted from auto transplant regardless of age with superior OS

Single institution retrospective studies also support this conclusion, i.e. auto transplantation offers same benefit to elderly pts as to younger pts (Wildes TM Bone Marrow Transplantation (2015) 50, 1075–1082)

Merz M et al Euro J Canc 2016 52:1-8.

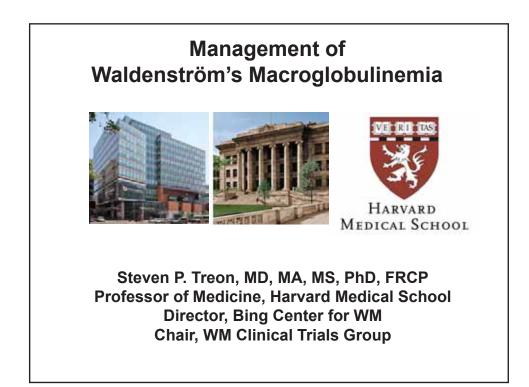
Case 1.

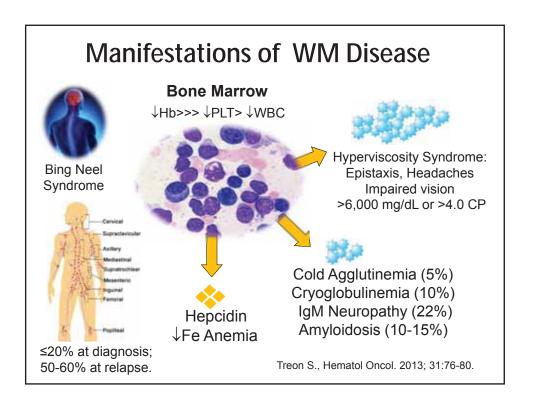

- 80 year old female referred with anemia, worsening renal insufficiency. Notes 3 month history of right hip pain
- Hgb 9.7g/dl, serum creatinine 2. 58mg/dl, IgA 20 mg/dl, IgG 340 mg/dl. IgM 10 mg/dl ↓↓
- Kappa light chains 904 mg/dl, ratio 617
- Bone survey-multiple lytic lesions skull, ribs, large lesion in right femoral head
- Bone marrow biopsy-63% plasma cells, Cytogenetics 46 x,x FISH 1q amplification
- PMH-aortic aneurysm repair 2015 (no complications), hypertension
- Current medications: amlodipine, furosemide
- Social History- lives in senior apartment complex; group activities but fixes own meals; does laundry

Case 2.

- 75 year old male presented with anemia in 7/2015
- PMH: no cardiac, renal, pulmonary disease
- Workup: bone survey without lytic lesions; low dose whole body CT showed diffuse osteopenia; Hgb 8.2g/dl; lambda 44.8mg/dl, IgA 1574 mg/dl, M spike 1.2g/dl; nl WBC, plts
- BM BX: 30% plasma cells; Cytogenetics/FISH: 1q amplification; -13; 46 x,y
- Treated with lenalidomide 15 mg d 1-21, dexamethasone 40 mg weekly
- After 6 months, Hgb 9 g/dl, lambda light chains 27 mg/dl; IgA 1108mg/dl
- Referred for second opinion
- Observed PS is 0

- Frailty score case #1:
- Charlson comorbidity: points for Age, renal disease, Cardiovascular (5)
- Also not independent in transportation, housekeeping
- IMWG Frailty score: 3
- Recommended therapy: modified VRD

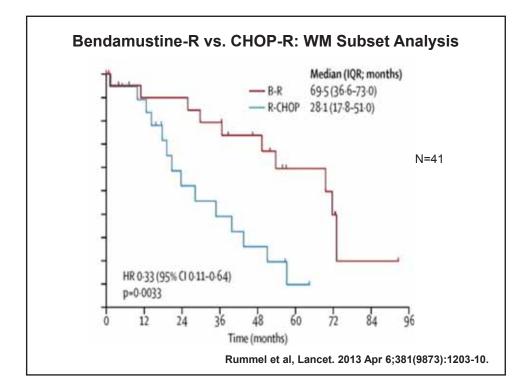

- Frailty score case #2:
- Charlson comorbidity: 1 (point for age)
- Independent in all ADLS and IADLs
- IMWG Frailty Score: 0
- Recommended therapy: triplet followed by auto PBSCT

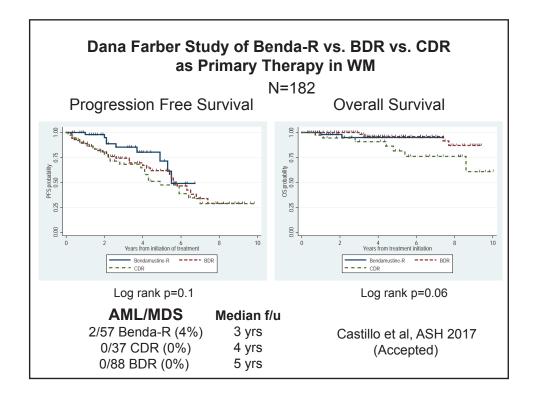


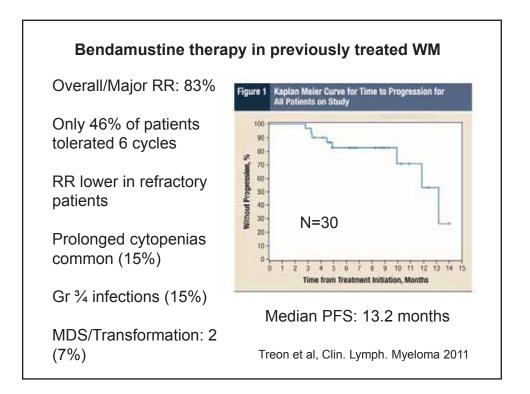
Copyright 2017©, National Comprehensive Cancer Network[®]. All rights reserved. No part of this publication may be reproduced or transmitted in any other form or by any means, electronic or mechanical, without first obtaining written permission from NCCN[®].

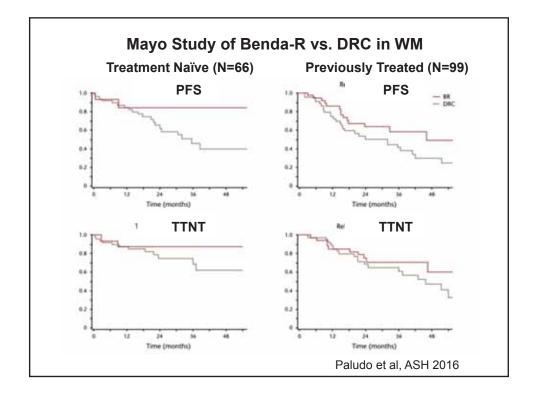
Conclusions:

- Average age of myeloma patients will continue to climb as population ages
- Therapy for myeloma patients should be determined largely by fitness; scoring systems exist and are relatively easy to use
- Even older frail patients can benefit from newer therapies
- Consider dose modifications, rather than omission of drugs to capitalize on synergy
- Use steroids sparingly to avoid hyperglycemia, myopathy, infection
- Autologous transplantation is underutilized in older MM pts and should be offered to fit pts
- Always consider clinical trials

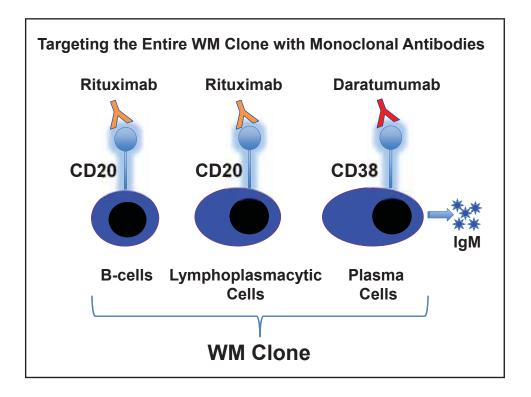


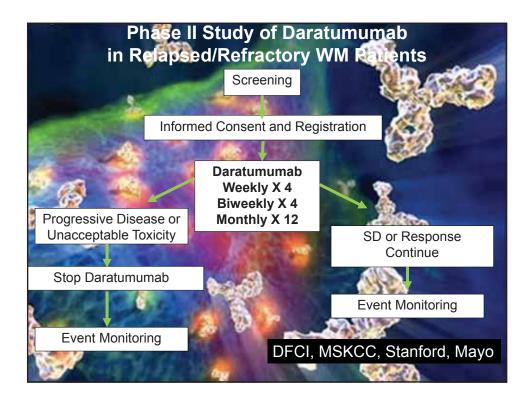

ta3

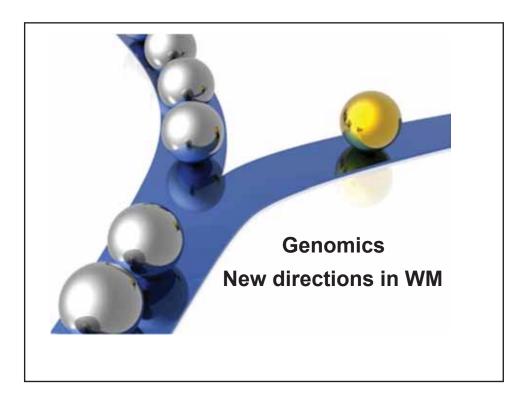

Regimen	ORR	VGPR/CR	TTP (mo)
Rituximab x 4	25-30%	0-5%	13
Rituximab x 8	40-45%	5-10%	16-22
Rituximab/thalidomide	70%	10%	30
Rituximab/cyclophosphamide i.e. CHOP-R, CVP-R, CPR, CDR	70-80%	20-25%	30-36
Rituximab/nucleoside analogues i.e. FR, FCR, CDA-R	70-90%	20-30%	36-62
Rituximab/Proteasome Inhibitor i.e. BDR, VR, CaRD	70-90%	20-40%	42-66
Rituximab/bendamustine	90%	30-40%	69

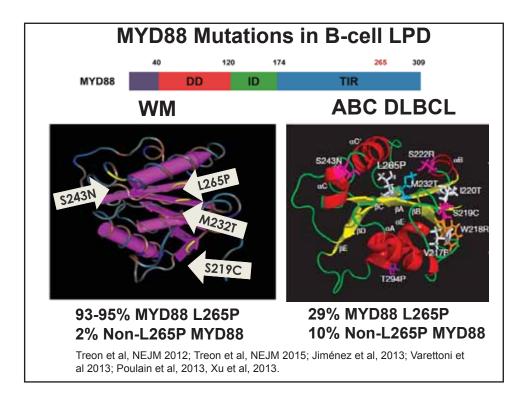

Reviewed in Dimopoulos et al, Blood 2014; 124(9):1404-11; Treon et al, Blood 2015; How I Treat WM

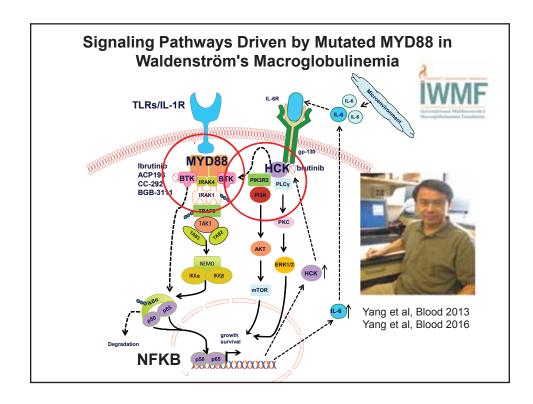
ta3 I don't know what the references for this are. tristin.abair, 6/6/2011

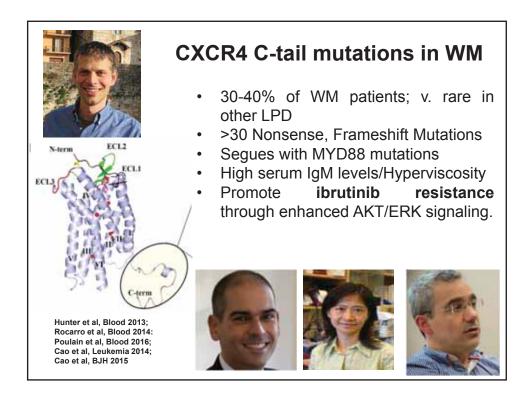


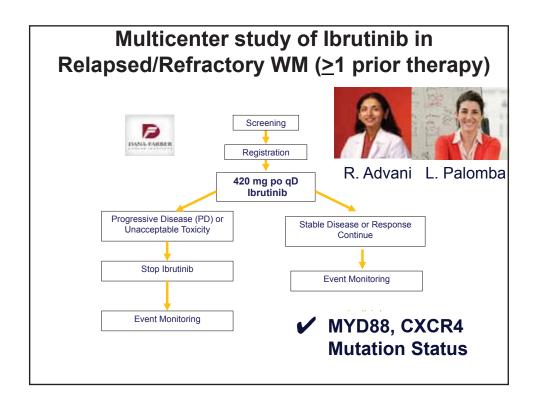

Mayo Study of Benda-R vs. DRC in WM Adverse Events				
	Ben	da-R	Di	RC
% with AE	All	Gr <u>></u> 3	All	Gr <u>></u> 3
Neutropenia	39	11	39	20
Thrombocytopenia	26	2	20	7
Nausea/Vomitting	9	2	7	0
Fever/Chills	5	0	3	0
Headache	2	0	4	0
Hypotension	2	0	3	1
Infections	19	5	15	3
5% of patients developed treatment related MDS or transformation to aggressive lymphoma. Paludo et al, ASH 2016				

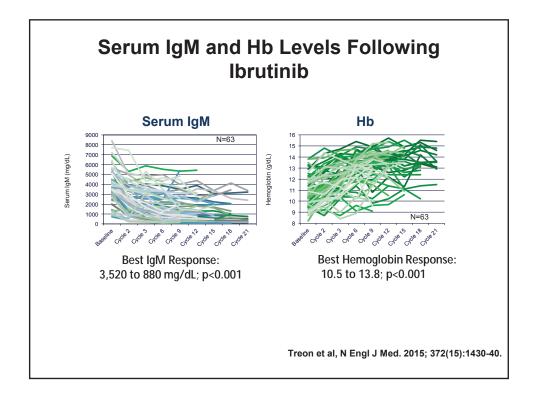

Italian Study: FCR vs. Benda-R in previously treated WM

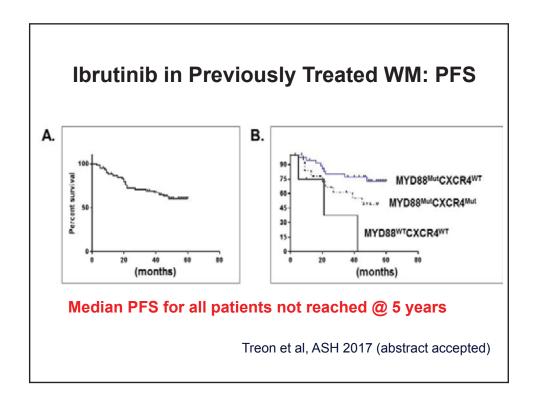

	FCR	Benda-R
N=	37	50
ORR/Major RR	81%	80%
Median PFS	69 months	35 months
Discontinuation due to toxicity	40%	38%
Secondary Malignancies	32%	8%
Intended therapy: 6	o cycles Tedesc	hi et al, ASH 2015

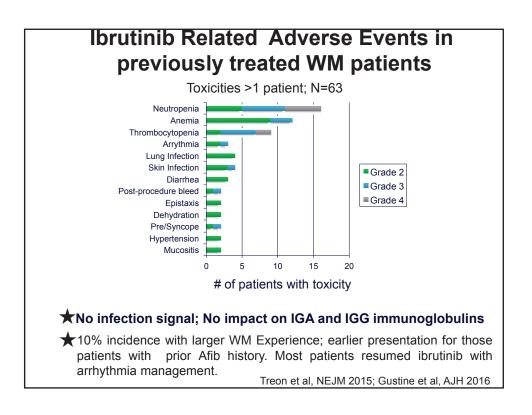

Clinical Sequelae of Rituximab Therapy in WM IgM flare (50% of patients) • -Symptomatic hyperviscosity in patients with high serum IgM (>4,000 mg/dL). -Potentiate IgM Neuropathy, Cryoglobulinemia, Cold Agglutinemia Hypogammablobulinemia (most patients) ٠ -Recurring sinobronchial infections and nosocomial infections with IgA, IgG depletion -Chronic IVIG replacement Intolerance with prolonged use (10% of patients) ٠ Anderson et al, JNCCN 2012; 10(10):1211-9.

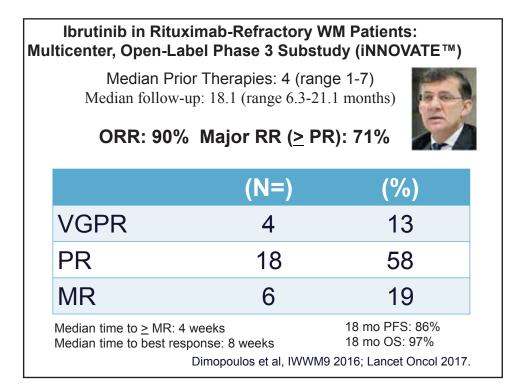




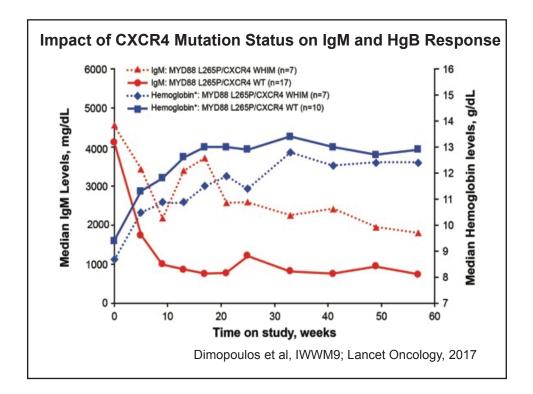


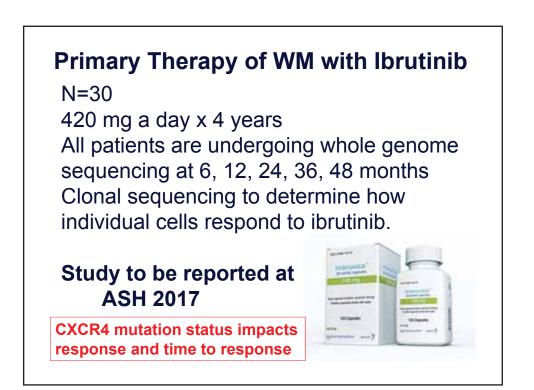


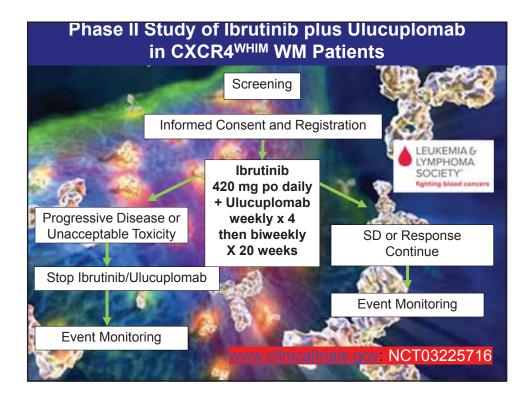


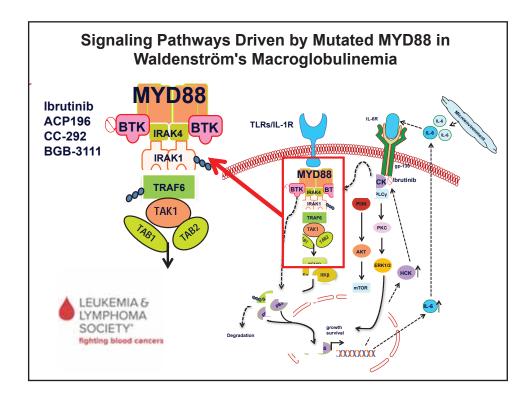

Baseline Characteristics for Study Participants (n=63)			
	Median	Range	
Age (yrs)	63	44-86	
Prior therapies	2	1-9	
Hemoglobin (mg/dL)	10.5	8.2-13.8	
Serum IgM (mg/dL)	3,520	724-8,390	
B ₂ M (mg/dL)	3.9	1.3-14.2	
BM Involvement (%)	60	3-95	
Adenopathy >1.5 cm	37 (59%)	N/A	
Splenomegaly >15 cm	7 (11%)	N/A	

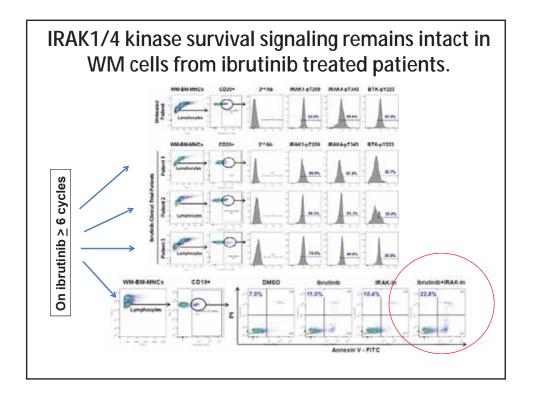
Responses to ibrutinib are impacted by MYD88 (L265P and non-L265P) and CXCR4 mutations.					
	ALL	MYD88 ^{Mut} CXCR4 ^{WT}	MYD88 ^{Mut} CXCR4 ^{Mut}	MYD88 ^{WT} CXCR4 ^{WT}	P-value
N=	63	36	21	5	
ORR	90.4%	100%	85.7%	60%	0.005
Major (>PR)	77.7%	97.2%	66.6%	0%	<0.001
VGPR	27.0%	44.4%	9.5%	0%	0.007
Time to Minor Response (mos.)	1.0	1.0	1.0	1.0	0.10
Time to Major response (mos.)	2.0	2.0	6.0	N/A	0.05
		Treor	n et al, ASH 20	017 (abstract	accepted)

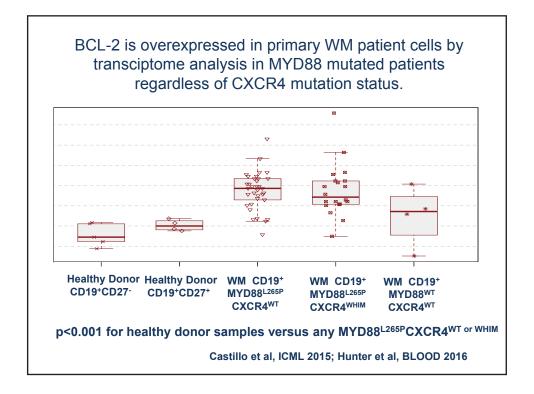


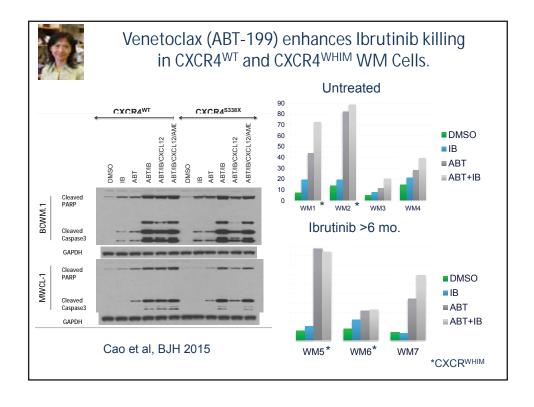


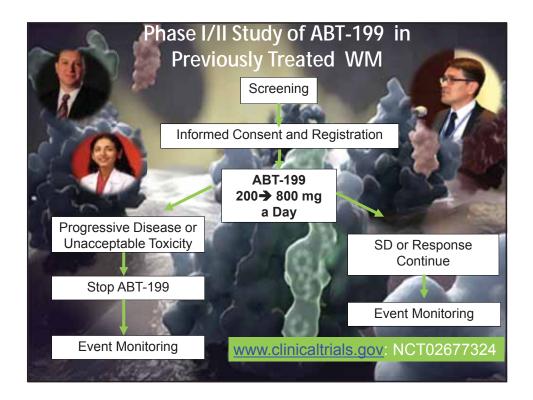

iNNOVATE ARM C: Frequent Adverse Events ≥5% G3			
	Grade 1-2	Grade 3	
Neutropenia	3 (10%)	3 (10%)	
Anemia	3 (10%)	2 (6%)	
Thrombocytopenia	4 (13%)	1 (3%)	
Diarhea	11 (36%)	2 (6%)	
Hypertension	4 (13%)	3 (10%)	
 No Afib events Dose reductions for <i>i</i> 	AEs: 4 (13%)		


Dimopoulos et al, Lancet Oncol. 2017









17

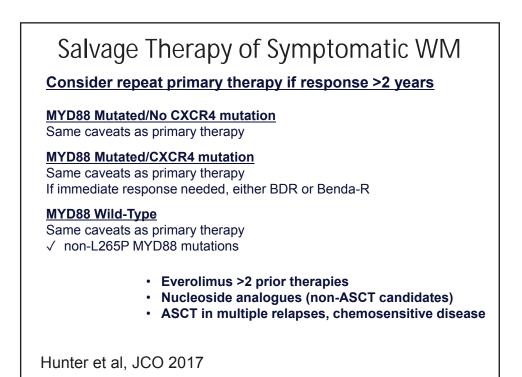
Approach to Frontline Therapy of Symptomatic WM

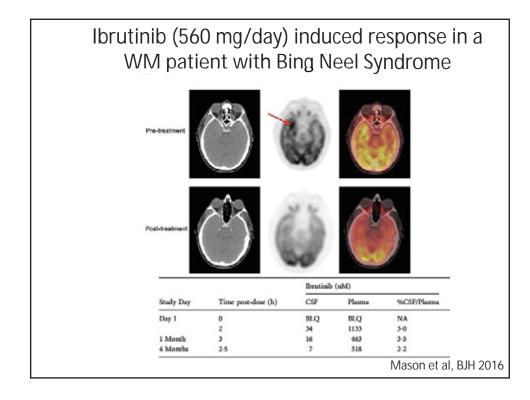
Hyperviscosity, Severe Cryos, CAGG, PN→ Plasmapheresis

MYD88 Mutated/No CXCR4 mutation

No bulky disease, no contraindications→ Ibrutinib (if available) Bulky disease → Benda-R Amyloidosis → Bortezomib/Dex/Rituximab (BDR) IgM Peripheral Neuropathy → Rituximab <u>+</u> Alkylator

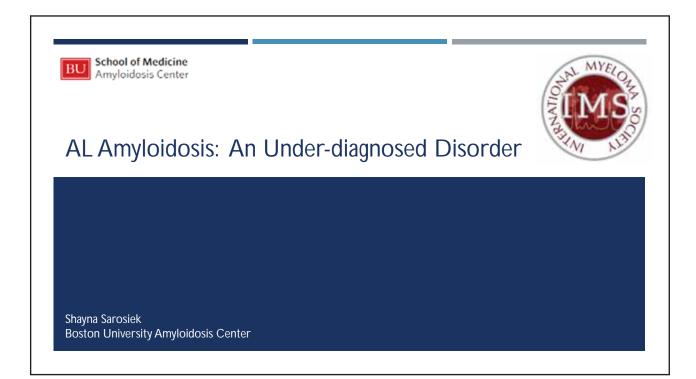
MYD88 Mutated/CXCR4 mutation

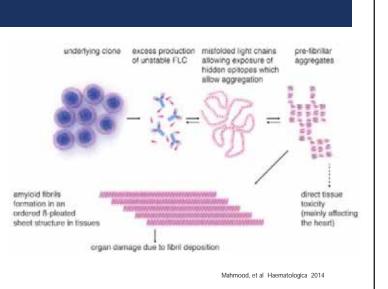

Same caveats as above If immediate response needed, either BDR or Benda-R

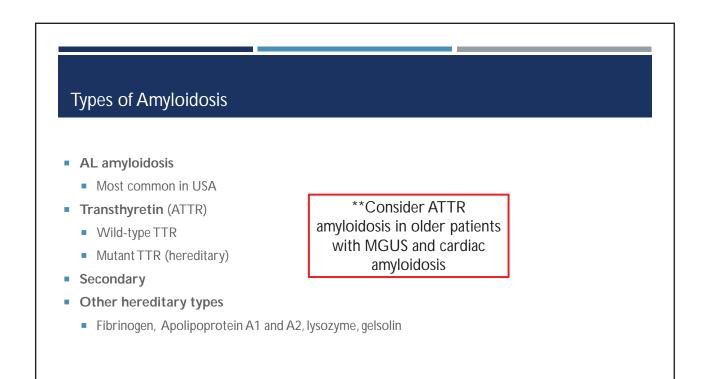

MYD88 Wild-Type

✓ non-L265P MYD88 mutations BDR or Benda-R

- Hold Rituximab until IgM <4000 mg/dL or empiric pheresis is performed.
- Consider Maintenance Rituximab
- Consider Ofatumumab if R intolerant.

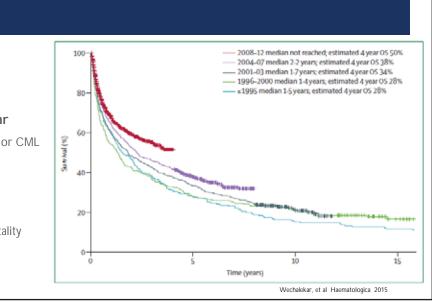

Hunter et al, JCO 2017




Objectives

- What is amyloidosis?
- Types of amyloidosis
- Diagnosis of AL amyloidosis
- Presenting signs & symptoms
- Approach to treatment and supportive care

What is amyloidosis?


- Misfolding of a precursor protein
 - Light chain, transthyretin, etc
- Misfolded proteins aggregate and form amyloid fibrils
 - Anti-parallel β strands that form sheets
- Deposit in organs and cause dysfunction

AL Amyloidosis

- Rare disorder
- ~10 patients/million per year
 - Similar to Hodgkin's lymphoma or CML
- Poor prognosis
 - Overall survival is increasing
 - No recent change in early mortality

Making the Diagnosis Primary care physician Cardiologist Hematologist/Oncologist Nephrologist Other Gastroenterologist First visit (n = 433) Diverse presentation Second visit (n = 383) • Fibrils can affect most organs Third visit (n = 272) • Tissue specificity is poorly understood Fourth visit (n = 170) Varied initial clinical presentation 100 200 300 400 500 Respondents Lousada, et al Adv Ther 2015

Making the Diagnosis in MGUS and SMM patients

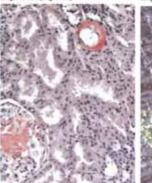
**A patient with MGUS or smoldering multiple myeloma and...

- Nephrotic syndrome
- Bilateral carpal tunnel syndrome
- Heart failure
- Peripheral neuropathy, especially in non-diabetic
- Autonomic neuropathy
- Hepatomegaly
- Macroglossia or periorbital bruising
- Severe fatigue and weight loss

**Evaluate for signs/symptoms of organ dysfunction (including NTproBNP, albuminuria) during routine MGUS evaluations

Four steps for diagnosis of AL Amyloidosis

- 1. Demonstrate amyloid deposition
- 2. Type amyloid deposits
- 3. Assess for monoclonal disease
- 4. Determine the extent of organ involvement


Four steps for diagnosis of AL Amyloidosis

1. Demonstrate amyloid deposition

- 2. Type amyloid deposits
- 3. Assess for monoclonal disease
- 4. Determine the extent of organ involvement

Demonstrate amyloid deposition by biopsy

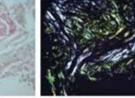
- Congo red stain, Apple-green birefringence
- Fat pad
 - aspirate (bedside, beneficial in coagulopathy)
 - biopsy (surgical)
- Involved organ
 - kidney, heart, GI tract, tongue
- Salivary gland

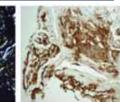
Wechalekar, et al Lancet 2015

Four steps for diagnosis of AL Amyloidosis

1. Demonstrate amyloid deposition

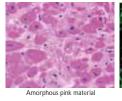
2. Type amyloid deposits

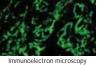

- 3. Assess for monoclonal disease
- 4. Determine the extent of organ involvement


Characterize the type of amyloid

Immunohistochemistry

- Widely available
- Low sensitivity in AL amyloidosis

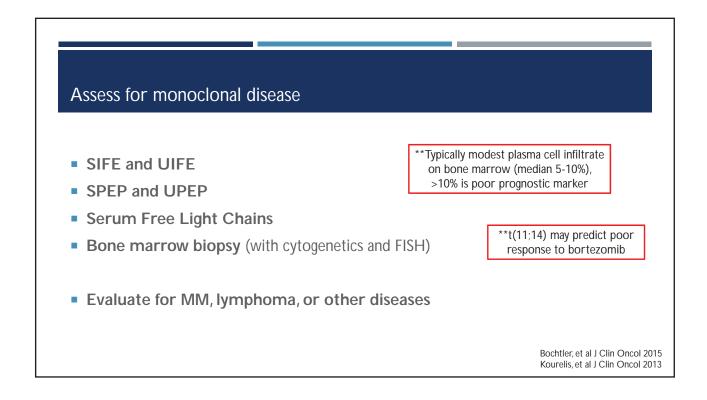


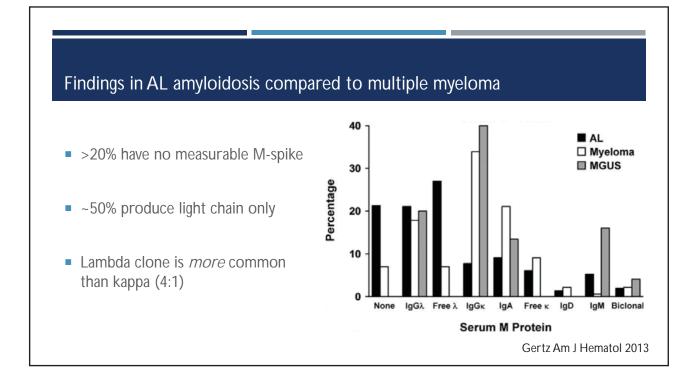


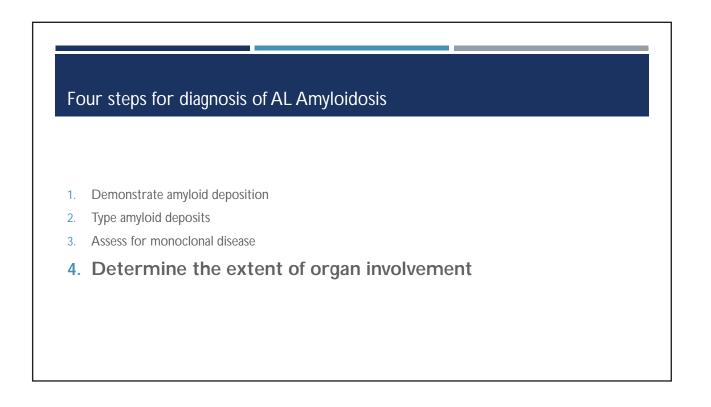
Apple-green birefringence

Immunohistochemistry Patel, et al J of Int Med 2015

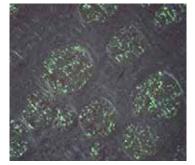
- Immunogold electron microscopy
 - Gold-labeled anti-fibril protein antibodies
- Laser microdissection and mass spectrometry
 - Gold standard






Falk Circulation 2011

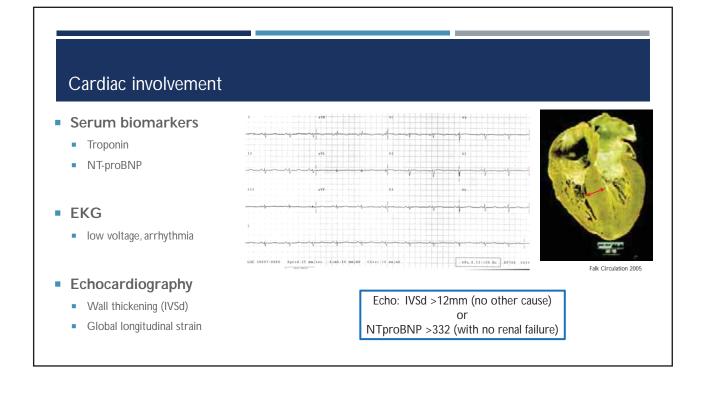
- 1. Demonstrate amyloid deposition
- 2. Type amyloid deposits
- 3. Assess for monoclonal disease
- 4. Determine the extent of organ involvement

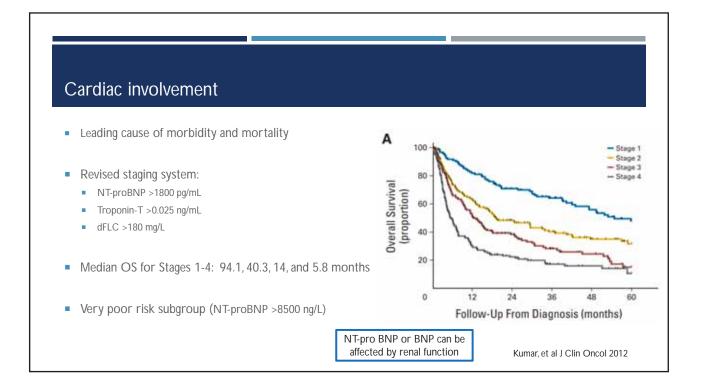

Organ involvement

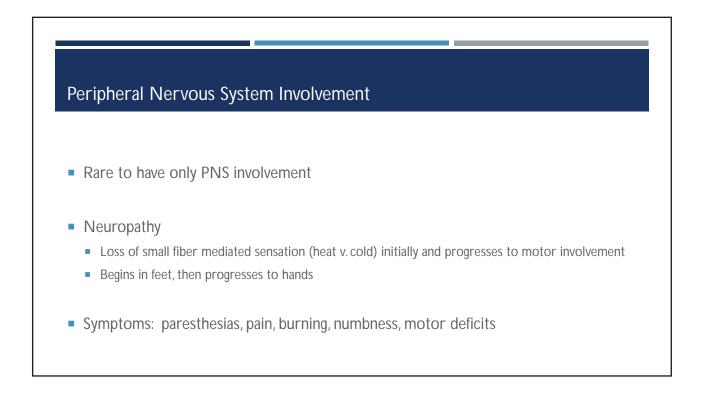
- Kidney (common organ involved)
- Heart (most common cause of morbidity and mortality)
- Autonomic nervous system
- Peripheral nervous system
- GI tract
- Soft tissue
- Liver
- Coagulopathy (Factor X deficiency)
- Other organs

**Localized: bronchial/lung, bladder, skin/subcutaneous, GI -resection, radiation, or observation -typically not treated with systemic therapy

Renal involvement


- Nephrotic syndrome (edema, weight gain, foamy urine)
 - Majority have glomerular involvement
 - Creatinine often preserved until late stage
- ~10% have vascular or tubulointerstitial involvement without significant proteinuria
 - Often with rapidly worsening renal function
- 24 hour urine protein (BJ v. albuminuria)




24 hour urine >500mg (predominantly albumin)

Cardiac involvement

- Restrictive cardiomyopathy
 - dyspnea on exertion, peripheral edema, elevated JVP, ascites, syncope, congestive hepatomegaly
- Typically preserved ejection fraction
 - Low cardiac output seen in advanced disease or light chain toxicity
- Cardiac imaging
 - MRI (late gadolinium enhancement)
 - Technetium pyrophosphate scan for ATTR cardiomyopathy

- Check orthostatic BP measurements
- Lightheadedness/Syncope
 - Postural hypotension
- Erectile Dysfunction
- GI symptoms: diarrhea, constipation, early satiety

Soft tissue involvement

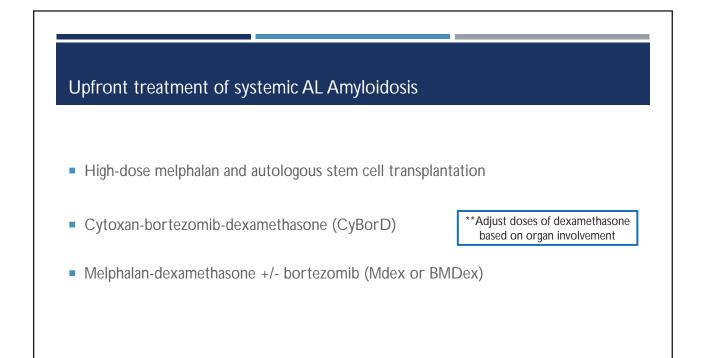
- Macroglossia
- Peri-orbital bruising
- Submandibular/Salivary gland enlargement
- Carpal tunnel syndrome
- Nail dystrophy
- Skin nodules
- Claudication (jaw)
- Bone/joint

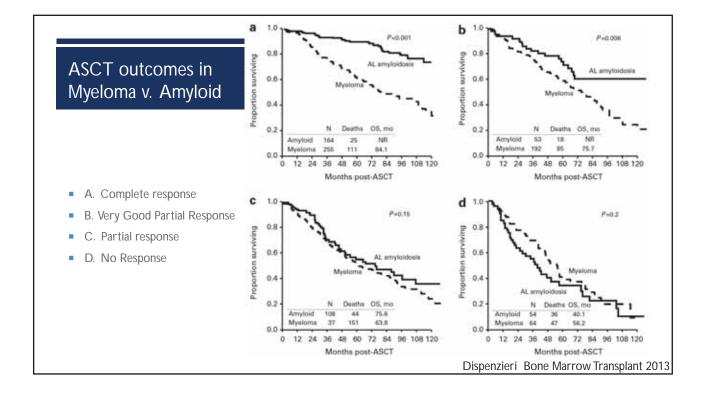
Merlini, et al Blood 2013

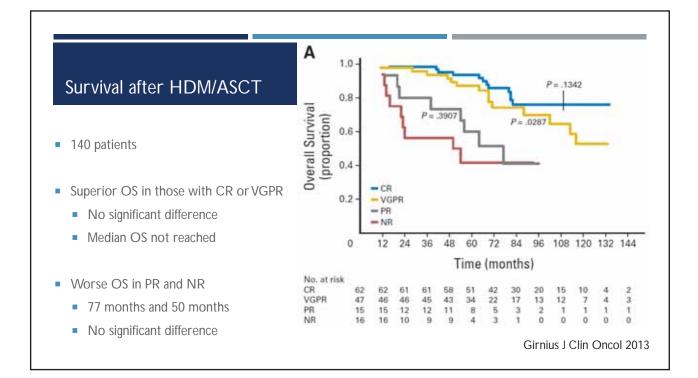
Gastrointestinal Involvement

- Nausea/Vomiting
- Abdominal pain
- Gastroparesis/early satiety
- Difficulty swallowing
- GERD
- Malabsorption
- Melena or bright red blood per rectum

Other organ involvement


Biopsy verification with symptoms


Liver span >15cm (in the absence of heart failure) • Liver (hepatomegaly, elevated alk phos or GGT) or Alk Phos >1.5 times upper limit of normal Coagulopathy (Factor X deficiency) Spleen Lungs Other


Treatment of systemic AL Amyloidosis

Treatment of systemic AL Amyloidosis

- Goal: suppress production of free light chains and remove amyloid deposits
- Treatment differs from multiple myeloma
 - Shorter therapy courses may be sufficient, treat 1-2 cycles beyond best hematologic response
 - Limited data on maintenance therapy
 - May not require induction therapy prior to ASCT

HDM with Autologous Stem Cell Transplantation

Table IV. Data regarding outcomes of high dose melphalan with autologous stem cell transplantation in patients with AL amyloidosis performed in tertiary centres.

Study period/ Reference	N	HR/CR	Organ responses	TRM	PES/OS
Boston University/ 1994–2013/	607	34%	NR	9%	Median OS: 6-7 years Median OS for those in CR: >12 years
Sanchorawala (2014) Mayo Clinic/ 1996–2010/	434	39%	47%	10%	CR: >10 years PR: 8-9 years
Gentz et al (2010) MD Anderson Cancer Center/ 1998–2011/	80	31%	39%	12.5%	NR: 2-7 years OSe >10 years (56% at 10 years)
Parmar et al (2014) Heidelberg University Hospital/ 1998–2014/	174	38%	40%	2%	Median OS: 11.3 years
Hegeisbart et al (2014)					

HDM with Autologous Stem Cell Transplantation

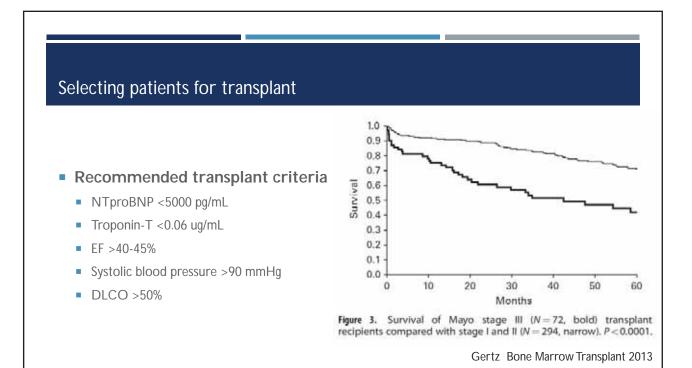
Table IV. Data regarding outcomes of high dose melphalan with autologous stem cell transplantation in patients with AL amyloidosis performed in tertiary centres.

Institution/ Study period/ Reference	Ν	HR/CR	Organ responses	TRM	PES/OS
Boston University/ 1994-2013/	607	34%	NR	9%	Median OS: 6-7 years Median OS for those in CR: >12 years
Sanchorawala (2014)		1			
Mayo Clinic/	434	39%	47%	10%	CR: >10 years
1996-2010/					PR: 8-9 years
Gertz et al (2010)					NR: 2-7 years
MD Anderson Cancer Center/ 1998–2011/ Parmar et al (2014)	80	31%	39%	12.9%	CNsc >10 years (56% at 10 years)
Heldelberg University Hospital/ 1998-2014/	174	38%	40%	2%	Median OS: 11.3 years
Hegenbart et al (2014)					

HR, haematological response; CR, complete response; NR, no response; TRM, treatment-related mottality; PFS, progression-free survival; OS, overall survival. Kastritis and Dimopoulos BIH 2015

HDM with Autologous Stem Cell Transplantation

Table IV. Data regarding outcomes of high dose melphalan with autologous stem cell transplantation in patients with AI, amyloidosis performed in tertiary centres.


Institution/ Study period/			Consider con	after transplant	
Reference	N	HR/CR	Organ responses	TRM	PES/OS
Boston University/ 1994–2013/ Sanchorawala (2014)	607	3496	NR	9%	Median OS: 6-7 years Median OS for those in CR: >12 year
Mayo Clinic/ 1996-2010/	434	39%	47%	10%	CR: >10 years PR: 8-9 years
Gertz et al (2010) MD Anderson Cancer Center/ 1998–2011/	80	31%	39%	12.5%	NR: 2-7 years OSc >10 years (56% at 10 years)
Parmar et al (2014) Heidelberg University Hospital/ 1998–2014/ Hegesbart et al (2014)	174	38%	40%	2%	Median OS: 11.3 years

HDM with Autologous Stem Cell Transplantation

Table IV. Data regarding outcomes of high dose melphalan with autologous stem cell transplantation in patients with AL amyloidosis performed in tertiary centres.

Institution/ Study period/					Mortality lower in recent yea	
Reference	N	HR/CR	Organ responses	TRM	PFS/OS	
Boston University/ 1994-2013/ Sanchorawala (2014)	607	3476	NR	9%	Median OS: 6-7 years Median OS for those in CR: >12 years	
Mayo Clinic/ 1996-3010/ Gente et al (2010)	434	39%	47%	10%	CR: ≥10 years PR: 8-9 years NR: 2-7 years	
MD Anderson Cancer Center/ 1998–2011/ Parmar et al (2014)	80	31%	39%	12.9%	OS: >10 years (36% at 10 years)	
Heldelberg University Hospital/ 1998–2014/ Hepenbart et al (2014)	174	38%	40%	-2%	Median OS: 11.3 years	

HR, haematological response; CR, complete response; NR, no response; TRM, treatment-related mortality; PFS, progression-free survival; OS, overall survival. Kastritis and Dimopoulos BIH 2015

**Treatment for relapsed/refractory disease

- Bortezomib/dex- SC, weekly, can worsen autonomic dysfunction and peripheral neuropathy
- **Carfilzomib-** concern for cardiac toxicity, not typically used
- Ixazomib/dex- in Phase III trials, seems to be well-tolerated
- **Lenalidomide/dex- not typically used upfront, high risk of renal dysfunction, 15mg recommended
- **Pomalidomide/dex-** monitor for renal dysfunction
- Daratumumab- recent case series, ongoing Phase II trial, monitor fluid status
- Rituximab- consider in WM/LPL associated

Supportive therapy

Supportive therapy

• Cardiac:

**Consider heart transplant prior to treatment if needed

- Diuretics (+/- albumin)
- Avoid digoxin, calcium channel blockers, and beta blockers
- Limited data on the use of ICDs or VADs

Supportive therapy

Orthostasis from ANS involvement

- Midodrine for postural hypotension, avoid florinef due to fluid overload
- Compression stockings

Gastrointestinal

- Assess for and treat bacterial overgrowth
- Prokinetic agents or anti-diarrhea medications

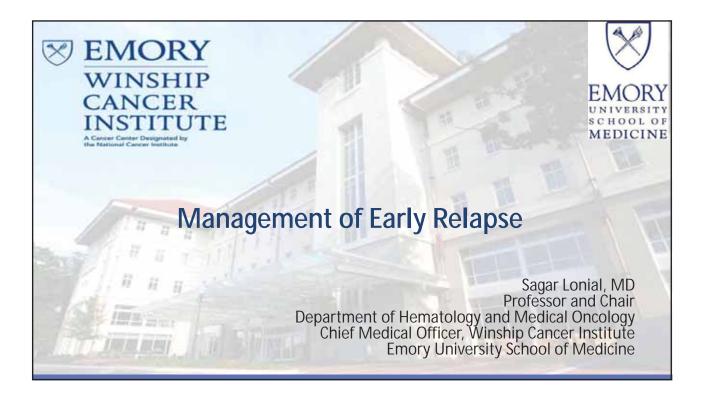
Assessment of response

- Evaluation of hematologic response
 - Rapid response
- Evaluation of organ response
 - May occur over many months to years
 - **Organ function may worsen even in hematologic remission

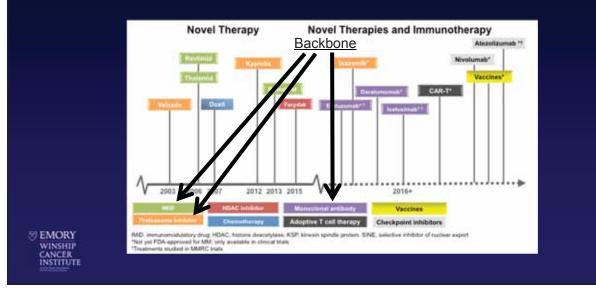
Comenzo, et al Leukemia 2012

- Doxycycline
- Anti-SAP antibodies
- NEOD001
 - PRONTO study, previously treated, stable plasma cell disease
 - VITAL study, upfront with CyBorD

Richards, et al NEJM 2015 Liedtke, et al ASH 2016 Gertz, et al J Clin Oncol 2016


Summary

- Accurate and early diagnosis is imperative, although difficult
- Very high early mortality
- Long-term outcomes are improving
- Effective treatments available, many more in development
 - Monitor for adverse side effects not typically seen in multiple myeloma


Acknowledgements

BU School of Medicine Amyloidosis Center

- Patients and their families
- Vaishali Sanchorawala, MD- Director
- Mark Sloan, MD
- Martha Skinner, MD
- John Berk, MD
- Many more colleagues, collaborators, and researchers
- In memory of David Seldin, MD

Who are the Players

- > Still have 'older' novel agents
 - -Bortezomib, Lenalidomide
 - -Carfilzomib, Dose/Schedule
 - -Pomalidomide

S EMORY WINSHIP CANCER INSTITUTE

- > 'New' Novel agents
 - -Ixazomib, Panobinostat
 - -Elotuzumab, Daratumumab

earlier lines or induction, partner for newer agents

Factors to Consider to for Treatment Selection : **Disease related Factors**

- > Nature of relapse
 - indolent vs aggressive
- Risk stratification
 - Genetics of initial and relapsed marrow
- > Disease burden
 - High vs low
- > R-ISS staging
 - 1 vs 2-3
 - Nooka AK, et al. Blood. 2015;125:3085-3099.
 - Palumbo A, et al. NG, J Med. 2011;36:1046-1060.
 Palumbo A, et al. Blood. 2011;118:4519-4529.
 Orlowski RZ, Lonial S. *Clin Cancer Res.* 2016;22:5443.

Factors to Consider to for Treatment Selection : **Treatment related Factors**

Previous therapy

- Pts with PD receiving IMiDs, PIs, or cytotoxic doublet/triplet therapies can benefit from next-generation regimens
- Avoid agents of previous regimen-related toxicity
- Maintenance therapy

Regimen-related toxicity

- Toxicity profile should be considered in light of pt comorbidities
- Neuropathy: consider neuropathy sparing durgs (avoid bortezomib, thalidomide)
- Cardiac issues (uncontrolled HTN, CHF): careful consideration of carfilzomib
- COPD: monoclonal antibodies with caution (daratumumab)
- DVT/PE: use anticoagulation with IMiDs
- Depth and duration of previous response, tumor burden at relapse
- Retreatment with previous therapies an option if pt had previous response to the treatment, acceptable tolerance, and relapse occurred at least 6 mos after previous exposure

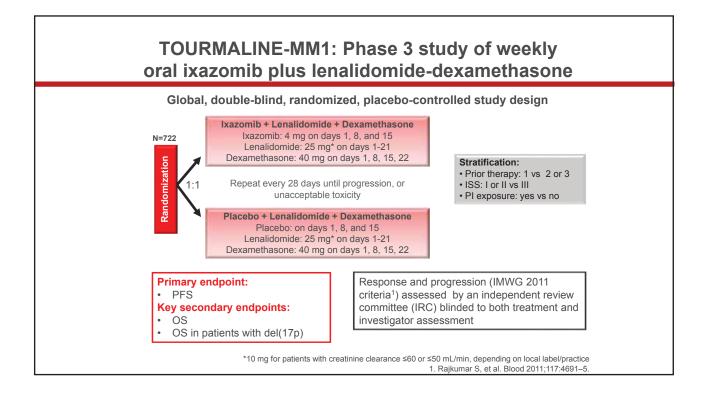
Nooka AK, et al. Blood. 2015;125:3085-3099. Palumbo A, et al. N Engl J Med. 2011;364:1046-1060. Palumbo A, et al. Blood. 2011;118:4519-4529.

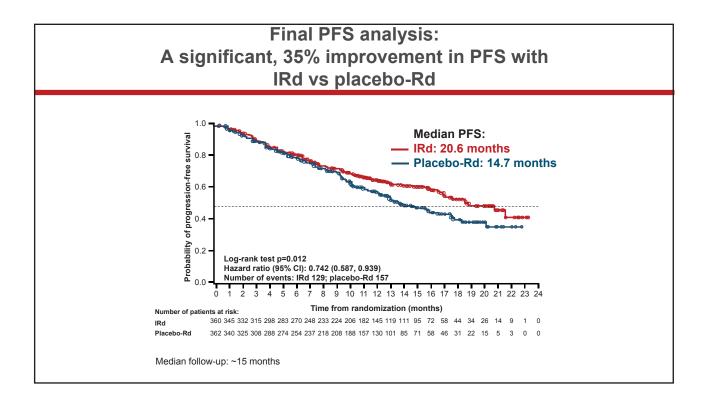
Factors to Consider to for Treatment Selection : Patient related Factors

- > Renal insufficiency: disease related or due to comorbidities (hypertension, vascular disease, diabetes, nephrotoxicity)^[1]
- Hepatic impairment common in pts with RRMM^[1]
- Comorbidities and frailty^[1]
 - Treatment decisions complicated in elderly
 - ↑ toxicity due to ↓ organ function, physiologic reserve
 - · European Myeloma Network vulnerability assessment algorithm anticipates regimen-related toxicities and assists individualizing therapy with least potential for interruption^[2,3]
- Patient preferences
 - Convenience, ease of travel, insurance and other social factors

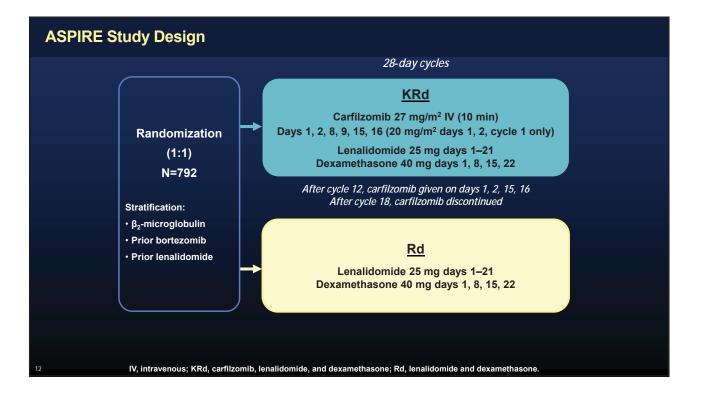
 - Nooka AK, et al. Blood. 2015;125:3085-3099.
 Palumbo A, et al. N Engl J Med. 2011;364:1046-1060.
 Palumbo A, et al. Blood. 2011;118:4519-4529.

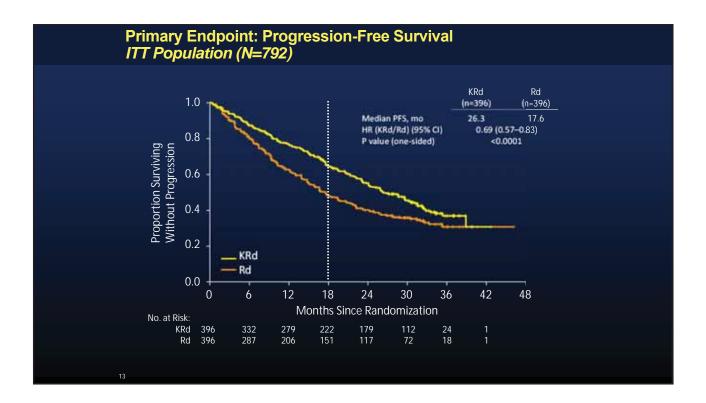
Lenalidomide and Bortezomib-Based Early Relapse Regimens: PFS and OS

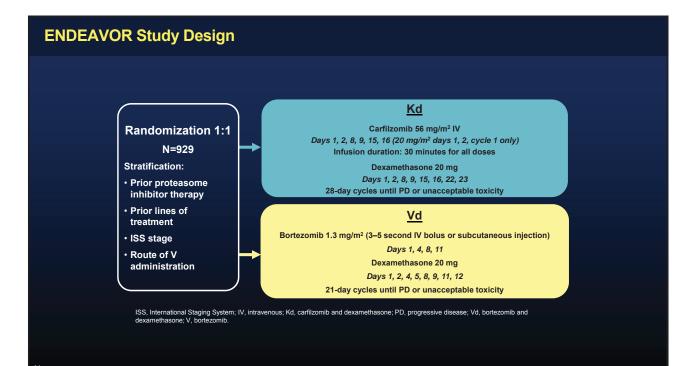

Trial	Regimen	PFS (mon)	ORR (%)	VGPR (%)	PFS (HR, 95% CI)	OS (HR, 95% CI)
ASPIRE ¹	Rd + Carfilzomib	26.3	87.1	69.9	.69 (.5783)	.79 (.6399)
N=792	Rd	17.6	66.7	40.4	P=.0001	<i>P</i> =.04
TOURMALINE-MM-12	Rd + Ixazomib	20.6	78.3	48.1	.74 (.5974)	NR
N=722	Rd	14.7	71.5	39	P=.01	INR
ELOQUENT-23	Rd + Elotuzumab	19.4	79	33	.70 (.5785)	70 (00, 00)
N=646	Rd	14.9	66	28	P<.01	.78 (.6396)
POLLUX⁴	Rd + Daratumumab	NR	93	75.8	.37 (.2850)	00 (40, 05)
N=569	Rd	18.4	76	44.2	<i>P</i> <.0001	.63 (.4295)
PANORAMA ⁵	Vd + Panobinostat	11.99	60.7	28	.63 (.5276)	.87 (.69-1.10)
N=768	Vd	8.08	54.6	16	<i>P</i> <.0001	<i>P</i> =.26
CASTOR ⁶	Vd + Daratumumab	NR	83	59	.39 (.2853)	00 (40, 00)
N=498	Vd	7.2	63	29	<i>P</i> <.0001	.63 (.4296)
ENDEAVOR7	Carfilzomib + Dex	18.7	76.7	54	.53 (.4465)	.79 (.58-1.08)
N=929	Vd	9.4	62.3	29	<i>P</i> <.0001	<i>P</i> =.06

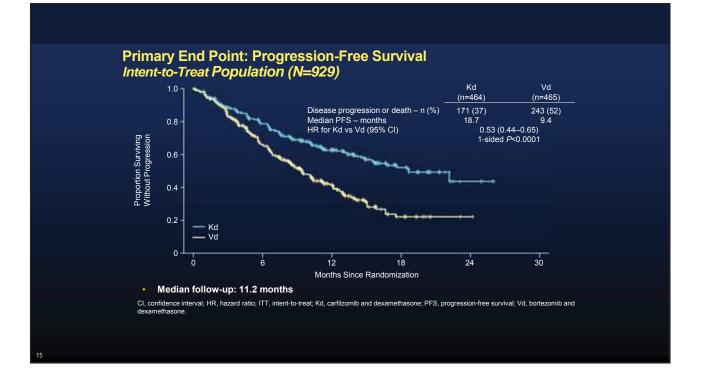

Stewart K, et al. N Engl J Med 2015;372:142-52.
 Moreau P, et al. N Engl J Med 2016; 374:1621-1634.
 Lonial S, et al. N Engl J Med 2015; 373:621-631.
 Dimopoulus M, et al. N Engl J Med 2016; 375:1319-1331.
 San Miguel J, Lancet Oncol 2014; 15: 1195–206.
 Palumbo A, et al. N Engl J Med 2016; 375:754-766.
 Dimopoulos M, et al. Lancet Oncol. 2016;17:27-38.

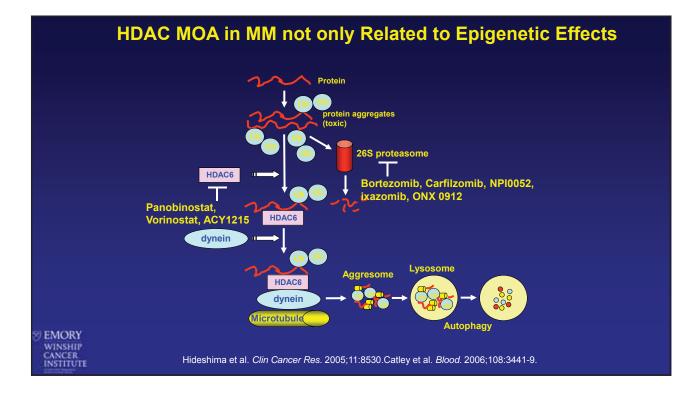
Ixazomib (MLN9708)

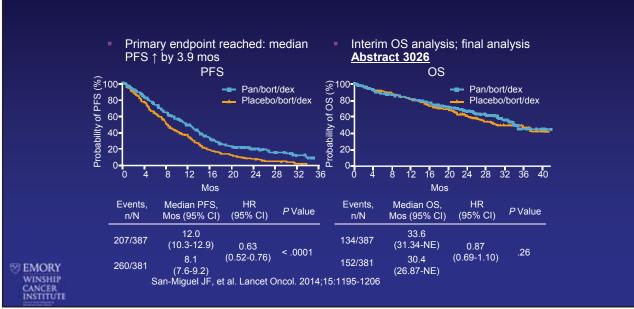

- > Ixazomib citrate (MLN9708) is a, reversible 20S proteasome inhibitor.
- > First oral proteasome inhibitor in trials
- > In plasma, ixazomib citrate rapidly hydrolyzes to the biologically active form (MLN2238).
- > Preclinical studies have demonstrated antitumor activity in MM cell lines and xenograft models.

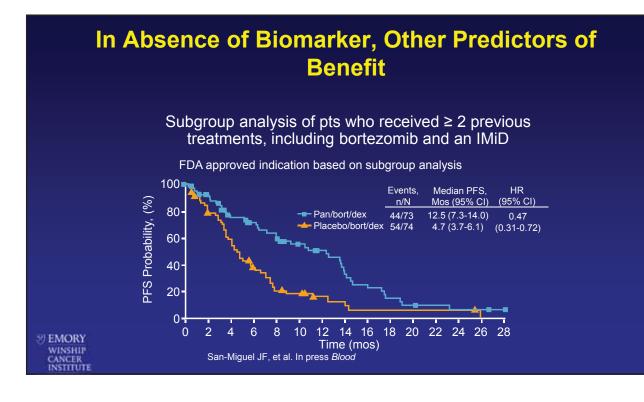

🛛 EMORY WINSHIP CANCER INSTITUTE

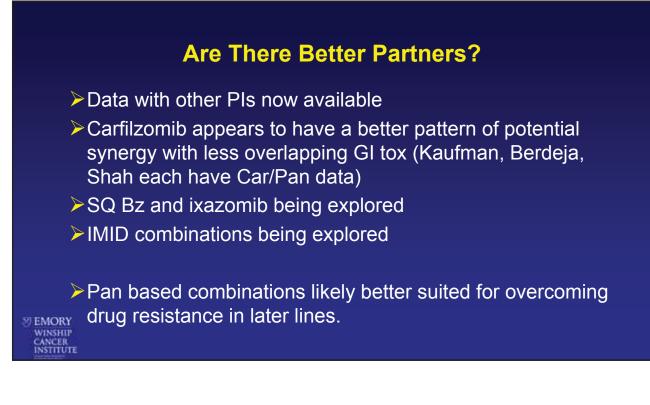


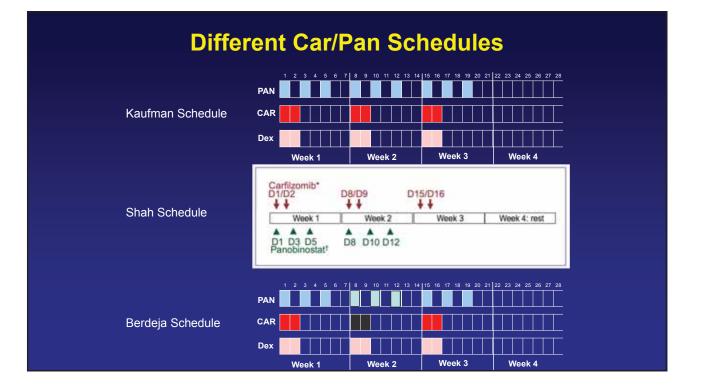



	ORR, %		≥VGPR, %		≥CR, %	Median PFS, months			
	IRd	Placebo -Rd	IRd	Placebo -Rd	IRd	Placebo -Rd	IRd	Placebo -Rd	HR
All patients	78.3*	71.5	48.1*	39	11.7*	6.6	20.6	14.7	0.742*
Standard-risk patients	80	73	51	44	12	7	20.6	15.6	0.640*
All high-risk patients	79*	60	45*	21	12*	2	21.4	9.7	0.543
Patients with del(17p) [†]	72	48	39	15	11*	0	21.4	9.7	0.596
Patients with t(4;14) alone	89	76	53	28	14	4	18.5	12.0	0.645






Panorama Trial Validates Preclinical Data

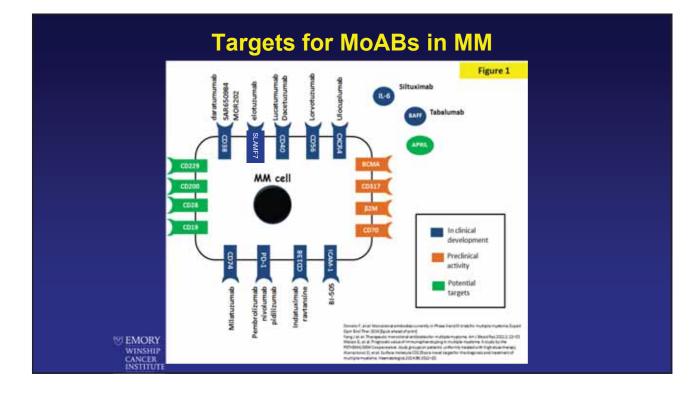


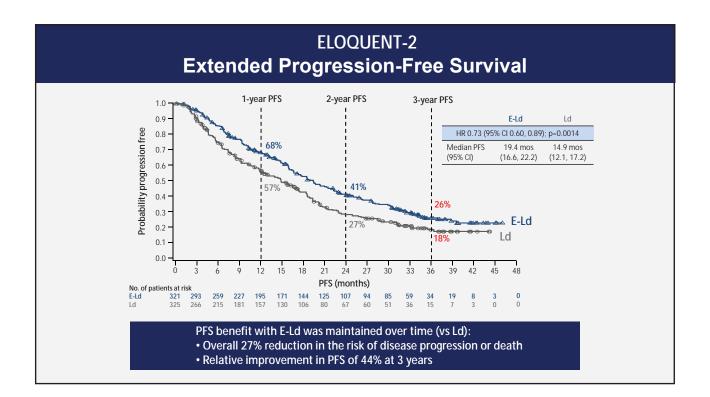
Toxicity Across studies

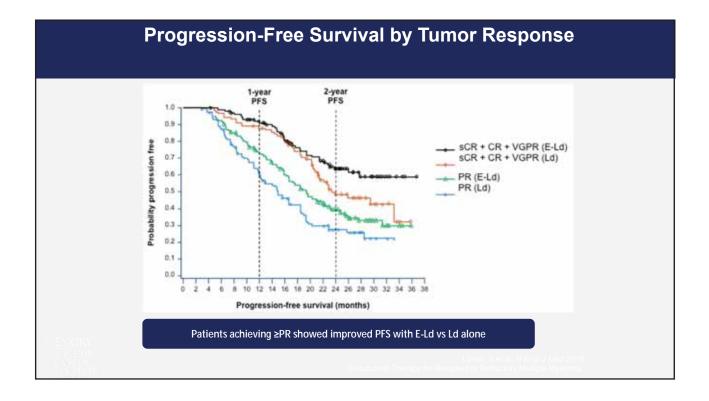
Adverse event	Phase II (N = 38)		Phase Ib Dose Expansion (n = 15)		PANORAMA (N = 55)	2	PANORAMA 1 (n = 381)	
	All grades;	Grade 3/4,%	All grades.	Grade 3/4,5	All grades, %	Grade 3/4, %	All grades,	Grade 3/4, %
Hematologic								
Thrombocytopenia	40	26	73	67	66	64	98	67
Neutropenia	34	32	60	47	18	15	75	35
Anemia	34	18	33	7	47	15	62	20
Nonhematologic	and the fi				1.0			
Diarrhea	42	З	87	20	71	20	68	25
Fatigue	47	5	73	20	69	20	61*	24*

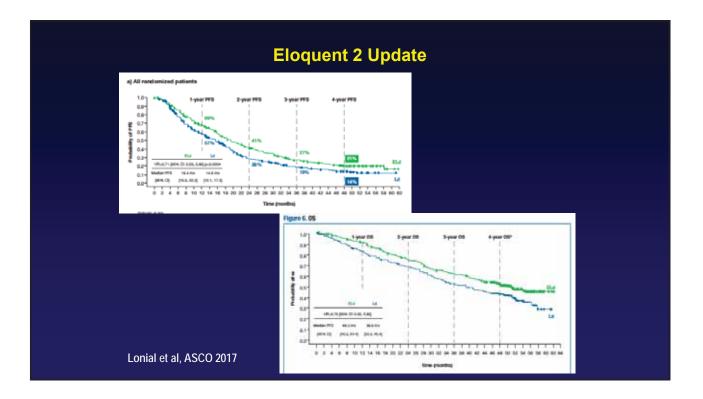
Richardson et al, Expert Review of Pharmacology, 2015

Kaufman Car/Pan Schedule							
Best confirmed response	N = 26 (%)	BTZ Refractory N = 16 (%)					
Overall response (CR + VGPR + PR)	45 # 79,	:#77,					
Complete response	1 (4)	1 (6)					
VGPR	5 (19)	1 (6)					
Partial response	6 (23)	5 (31)					
MR	3 (12)	1 (6)					
SD	3 (12)	3 (19)					
PD	6 (23)	4 (25)					
• All responses occurred in the first 2 c	ycles						
• Two patients maintained response for	18 months						
• Median DOR is 7.5 months and 8 pat	ients remain on t	reatment					

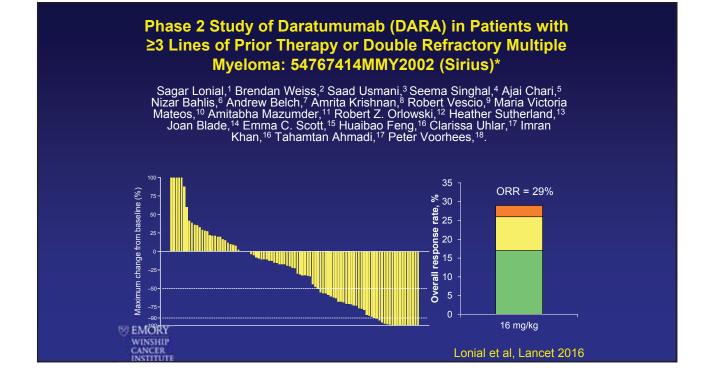

1 patient was not evaluable for response
 Kaufman

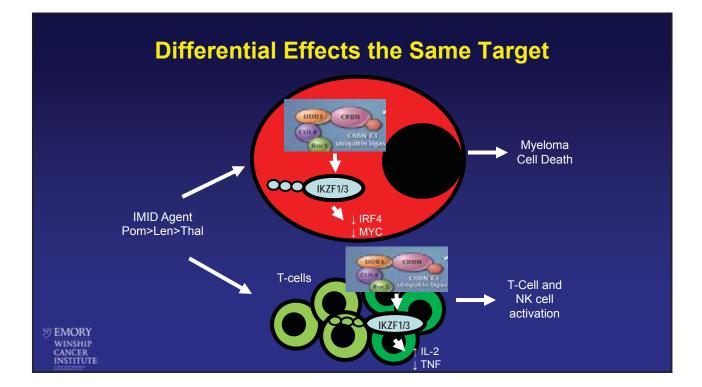

Response assessment	All patients n=42	Dose level 4 r=32	Prior bortezomilo n=37	Refractory to bortezomib #=15	Refractory to IMID s=12	Dual refractory #=5	High risk" e=11	Standard risk** n=21
ORR, n. (%)	28 (67%)	23 (72%)	26 (70%)	10 (67%)	9 (75%)	4 (80%)	8 (73%)	15 (71%)
CBR, n. (%)	33 (79%)	28 (88%)	31 (84%)	13 (87%)	(92%)	5 (100%)	9 (82%)	16 (76%)
≥VGPR, n. (%)	14 (33%)	12 (38%)	13 (35%)	3 (20%)	5 (42%)	1 (20%)	5 (45%)	8 (38%)
PR, n. (%)	14 (33%)	11 (34%)	13 (35%)	7 (47%)	4 (33%)	3 (60%)	3 (27%)	7 (33%)
MR, n. (%)	5 (12%)	5 (16%)	5 (14%)	3 (20%)	2 (17%)	I (20%)	1 (9%)	1 (5%)
SD, n. (%)	7 (17%)	2 (6%)	5 (14%)	2 (13%)	1 (8%)	0	1 (9%)	4 (19%)
PD, n. (%)	2 (596)	2 (6%)	(3%)	0	0	0	1 (996)	1 (5%)


Berdeja Car/Pan Schedule

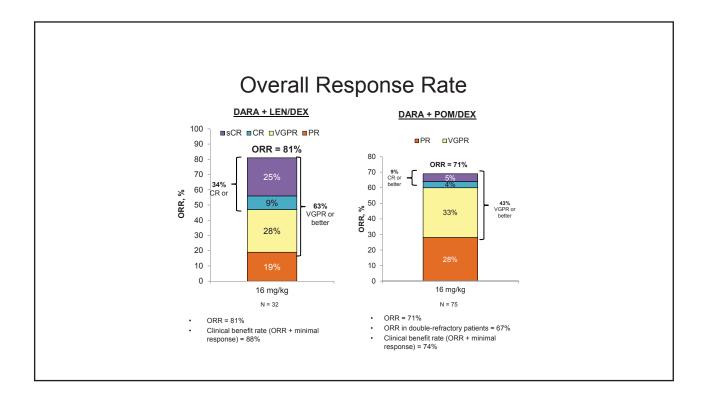

*High risk is defined as fluorescence in situ hybridization showing (FISH) Iq amp, or Ip del, or r(4;14), or r(14;16), or 17p del, or cytagenetics 13-q del. **Excludes patients with out FISH data.IMD: immune modulating drag.

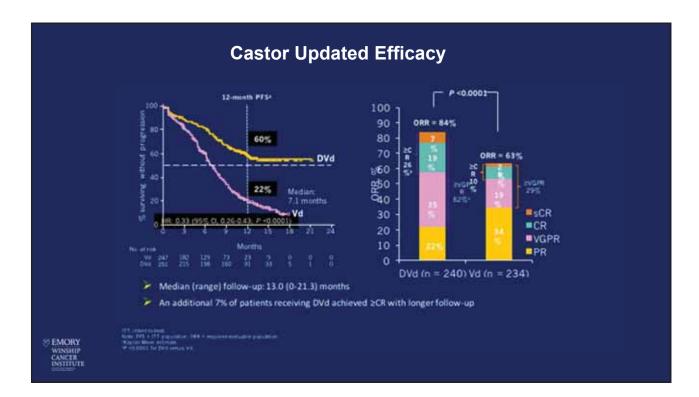
Berdeja et al, Haematologica 2015

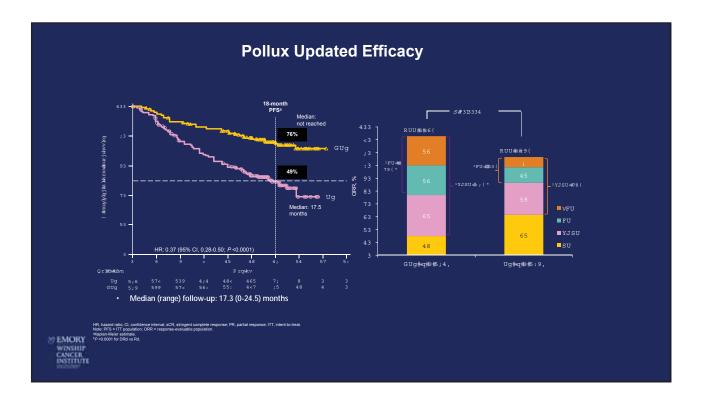


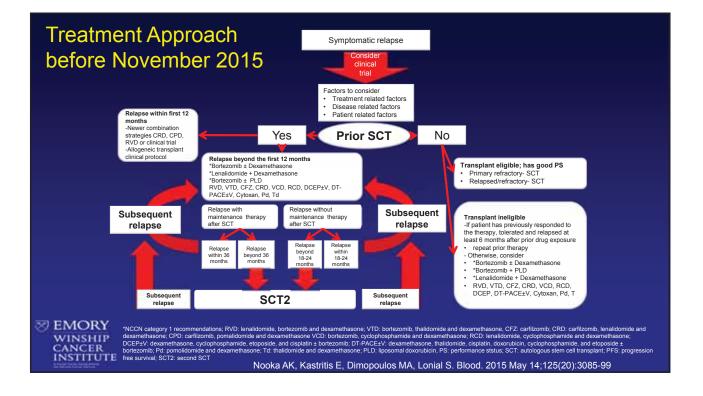

Daratumumab: Mechanism of Action

- Human CD38 IgGк monoclonal antibody
- Direct and indirect antimyeloma activity¹⁻⁵
- Depletes CD38+ immunosuppressive regulatory cells⁵
- Promotes T-cell expansion and activation⁵

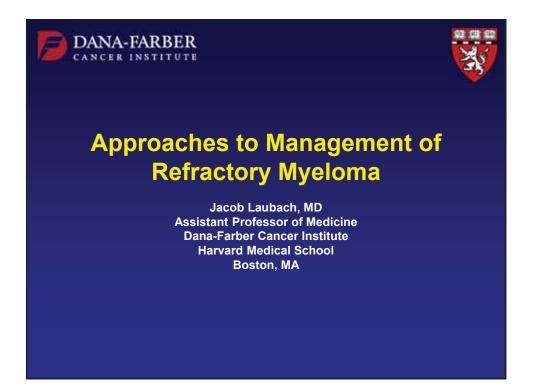



1. Lammerts van Bueren J. et al. Blood. 2014;124:Abstract 3474. 2. Jansen JMH, et al. Blood. 2012;120:Abstract 2974. 3. de Weers M. et al. JImmunol. 2011;186:1840-8. 4. Overdijk Me, et al. JMbs. 2015;7:311-21. 5. Krejcik J. et al. Blood. 2016. Epub ahead of print.

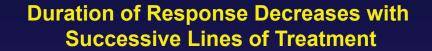


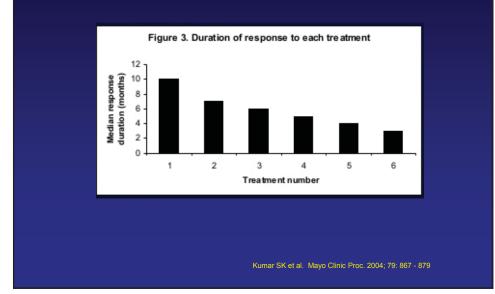


15



	Clinical Trial Check if pt is t(11;14)								
Slow indolen	t relapse	Aggressive relapse							
<u>+ Len maintenance</u>	<u>- Len maintenance</u>	<u>+ Len maintenance</u>	<u>- Len maintenance</u>						
Consider adding Ixazomib/Dex*	Consider Dara/Len/Dex	Consider Dara/Pom/Dex	Consider Dara/Len/Dex						
Consider Adding Elo/Dex*	Consider Elo/Len/Dex	Consider Car/Pom/Dex	Consider Dara/Vel/Dex						
* Increase len dose	Consider Car/Len/Dex		Consider Car/Pom/Dex						





Patient Case

- 52 year old woman develops lightheadedness/dizziness
- Laboratory studies show hyponatremia, anemia, elevated total protein
- SPEP: 5.07 g/dL, IgG lambda M-protein with total IgG 5660 mg/dl
- Skeletal survey: lucencies of the calvarium and humeri
- Bone marrow biopsy:
 - Hypercellular marrow with 80% plasmacytosis
 - Deletion 13, translocation (4:14)
- Receives RVD followed by ASCT and lenalidomide maintenance, achieves complete response post-ASCT
- Progresses based on increase in M-protein two years after ASCT, transitions to ixazomib plus lenalidomide and dexamethasone
- Best response to lxazomib plus len-dex is partial response. Progresses after 14 months on ixazomib plus len-dex.
- She then receives carfilzomib plus pomalidomide and dexamethasone. After best response of partial response, she progresses after 8 months.

Important Clinical Questions

- · Ideal regimen as next line of therapy
- Optimal sequence of regimens for treatment over time
- Duration of therapy with selected regimen

Combinations in Relapsed and Relapsed-Refractory MM

KRd Carfilzomib plus lenalidomide-dex IRd Ixazomib plus lenalidomide-dex

Kd Carfilzomib plus dex

Panobinostat plus bortezomib-dex

Pom-dex Pomalidomide-dexamethasone

Elotuzumab plus lenalidomide-dex

Daratumumab-based regimens (Dara monotherapy, DaraRd, DaraVd)

Management of Relapsed and RR Myeloma

Definitions

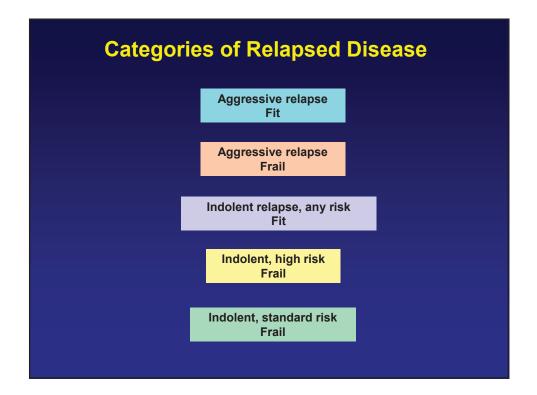
- Relapsed myeloma
 - 25% increase in serum or urine M-protein, percentage of bone marrow plasma cells, and/or difference between involved and uninvolved free light chains
 - Development of new bone lesions or plasmacytoma, hypercalcemia, renal impairment that cannot be attributed to another cause
- Relapsed and refractory myeloma
 - Disease that progresses on salvage therapy or within 60 days of the last treatment in patient who previously achieved at least a minimal response to therapy
- Primary refractory myeloma
 - Disease that fails to achieve at least minimal response with any treatment

Laubach J, et al. Leukemia 2016; 30: 1005 - 1017

Determinants of Therapy in RR MM

Disease Characteristics

- Biochemical progression only versus biochemical progression with significant symptoms and/or organ involvement
- Rapid versus slow, gradual increase in paraprotein
- · High- versus standard risk cytogenetics
- Presence or absence of extramedullary disease

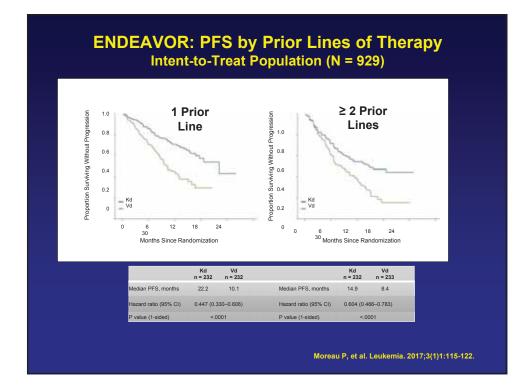

Determinants of Therapy in RR MM

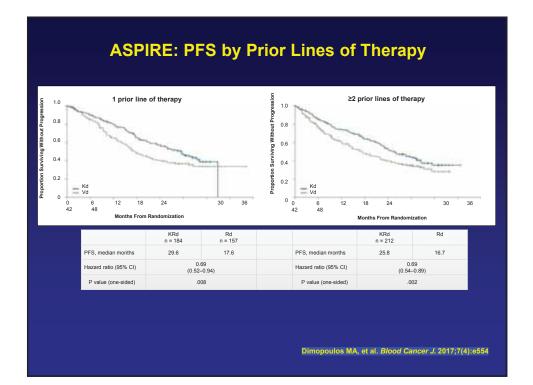
Characteristics of prior or ongoing therapy

- Brief versus prolonged response
- Depth of response
- Progression on current therapy
- Toxicities associated with prior therapy, including neuropathy, decreased cell counts, GI, or cardiac toxicity

Patient characteristics

- Performance status
- Co-morbid medical conditions
- Overall goals of care, including preference for mode of chemotherapy administration

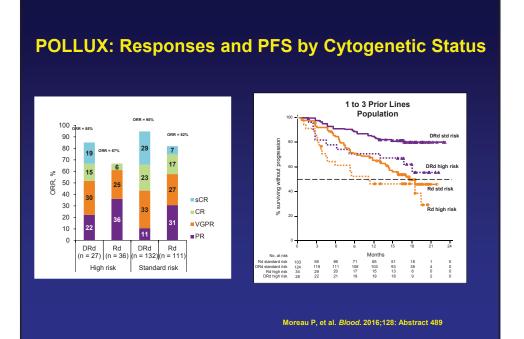

Recommendations for 2nd Relapse and Beyond

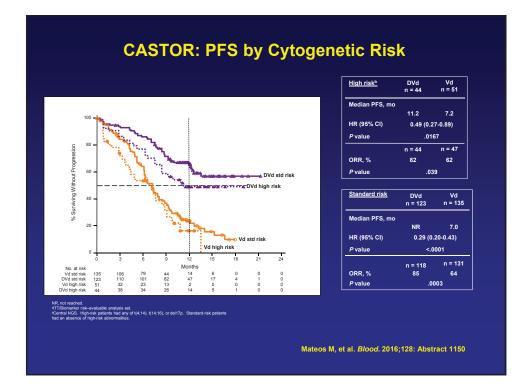

- Salvage regimen should incorporate at least one agent to which there has not been prior evidence of resistance or intolerability
- Patients with aggressive disease characteristics at time of relapse should be considered for three- or four-drug regimens while those with indolent disease can be considered for two- or three drug regimens
- Clinical trial participation should be offered if appropriate study is available.
- Patients in second relapse and beyond should receive ongoing therapy until the particular regimen is no longer tolerated or there is evidence of disease progression.

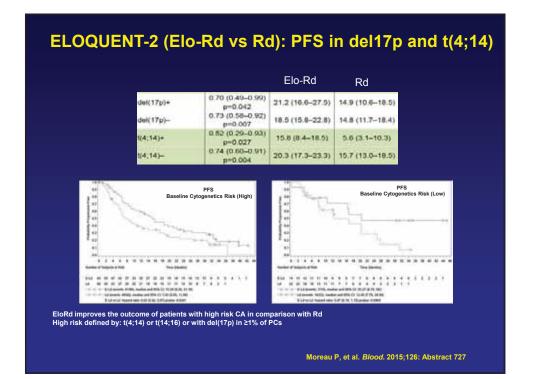
Laubach J, et al. Leukemia 2016; 30: 1005 - 1017

Availability of Clinical Trial Data Applicable to a Specific Clinical Scenario

- Multiple previous lines of therapy
- High-risk cytogenetics
- Elderly patients






7

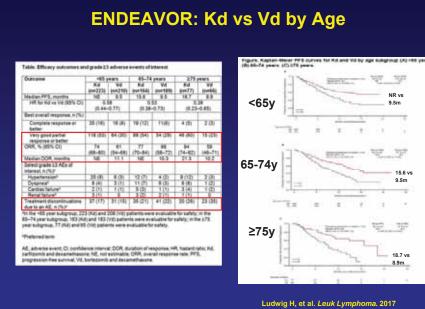
Availability of Clinical Trial Data Applicable to a Specific Clinical Scenario

- Multiple previous lines of therapy
- High-risk cytogenetics
- Elderly patients

TOURMALINE-MM1: Outcomes by Cytogenetic Risk Group

	ORR, %		≥VGPR, %		≥CR, %		Median PFS, Months		
	IRd	Placebo- Rd	IRd	Placebo- Rd	IRd	Placebo- Rd	IRd	Placebo- Rd	HR
All patients	78.3*	71.5	48.1*	39	11.7*	6.6	20.6	14.7	0.742*
Standard-risk patients	80	73	51	44	12	7	20.6	15.6	0.640*
All high-risk patients	79*	60	45*	21	12*	2	21.4	9.7	0.543
Patients with del(17p) [†]	72	48	39	15	11*	0	21.4	9.7	0.596
Patients with t(4;14) alone	89	76	53	28	14	4	18.5	12.0	0.645

*P<.05 for comparison between regimens. tAlone or in combination with t(4:14 or t(14:16). Data not included on patients with t(14:16) alone due to small numbers (n = 7).


In the IRd arm, median PFS in high-risk patients was similar to that in the overall patient
population and in patients with standard-risk cytogenetics

• High risk was defined by t(4;14) or t(14;16) or del17p in ≥ 5% of PCs

Moreau P, et al. Blood. 2015; 126: Abstract 727

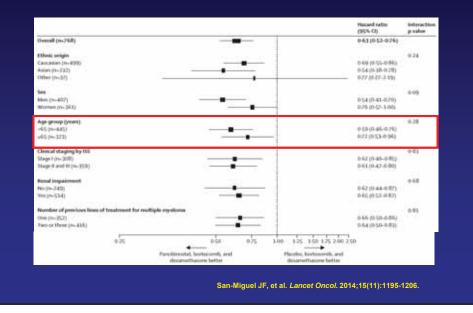
Availability of Clinical Trial Data Applicable to a Specific Clinical Scenario

- Multiple previous lines of therapy
- High-risk cytogenetics
- Elderly patients

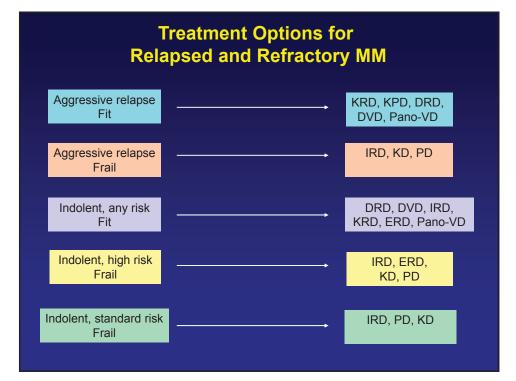
CASTOR: PFS Subgroup Analysis

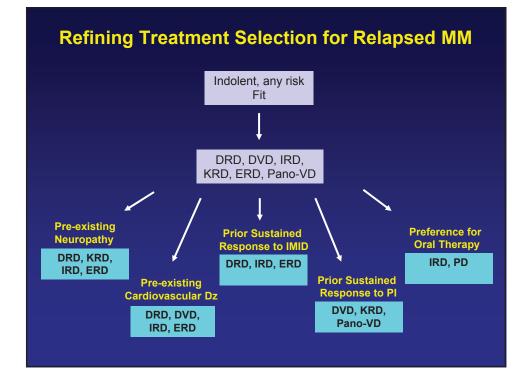
Subgroup	igroup Group Group no. of progression or death reventy/bital no.			Daratumumab Group progression-free rival (mo)	Hazard Ratio (95% CI)		
Age	59/125	39/132	7.5	10.5	10000		
<63 yr 265 w	63/122	26/119	6.7	NE	Her	0.44 (0.28-0.61 0.35 (0.22-0.53	
≥75 yr*		-	8.1	NE		0.27 (0.12-0.61)	
Sm					· · · ·		
Male	80/147	38/237	6.3	NE	Her	0.41 (0.27-0.6)	
Female	42/100	29/114	7.6	NE	He-I	0.38 (0.22-0.54	
155 dicease staging					12.00		
1	36/96	15/98	8.4	NE -	• •	0.25 (0.13-0.4)	
- 8	35/100	26/94	62	NE	Her	0.37 (0.23-0.61	
191	31/31	26/59	5.8	8.6	H-O-I	0.55 (0.11-0.98	
No. of previous lines of therapy					0327		
1	51/113	20/122	15	NE.		8.31 (0.18-0.5)	
1	17/74	22/70	6.5	10.3	Her	0.50 (0.28-0.85	
3	17/32	16/37	6.6	8.8		0.66 (0.31-1.4)	
21	17/28	9/22	5.4	8.4		0.48 (0.20-1.14	
Previous autologous stern-cell transplantation					San and a state		
Yes	74/149	42/156	6.7	NE	Her	0.38 (0.26-0.5)	
No	48/98	25/95	7.2	NE		0.34 (0.19-0.55	
				0.1	1.0	10.0	
				Deceter	mumab Better Cor	trol Better	
				Daratu	mumao setter Cor	intol Better	

Palumbo A, et al. *N Engl J Med.* 2016;375(8):754-766.

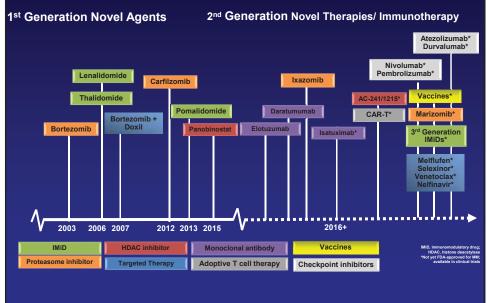

Subgroup	Daratumumah Group se of pro	Cuetrol Group	Daratumumab Group	Control Group count from	Hazard Ratio (1	9% CIJ
Au .	ments or date	the Australian	a second	Canal Sec.		
eklyr	24/111	35/140	NE.	18.4	i ei	0.40 (0.34-0.43)
85-78 yr	26/138	43/108	148	NE	101	0.40 (0.24-0.67)
a/3 et	3/29	14/33	142	23.4		0.11 (0.62-0.11)
155 disease state		241.14	11111			att bree atel
1	18/187	40/140	NE	18.4	1.001	0.40 (5.11-0.72)
14	21/94	45/84	NE	11.7	1.41	0.29 (0.17-0.50)
444	14/38	11/17	ALC: NOT	8.8	1-0-1	0.40 (0.11-0.74)
Past, of previous lines of them						
1	37/149	55/546	NE.	18.4	1001	0.41 (0.26-0.64)
	14/85	11/60	NE	33.0		8 29 (0.16-0.53)
	7/38	14(10	948	848	1-0-1	0.56 (0.13-1.03)
	3/34	8/19	A45	Pal.		8.35 (9.19-2.87)
Previous lessalidamide						
Tes	10/30	30/36	NI.	NE.	1.4.4	8.42 (0.19-0.90)
Paul	43/234	16/233	NE	18.4	(e) (8.36 (9.25-8.52)
Previous protessores infulbit	ar () ()					
Ves	48,7245	103/242	Aut	18.4	200	0.17 (0.26-0.52)
744	5/45	13/45	NE	FUE		0.35 (0.12-1.00)
Hafractory to protosassing led	whiter .					
Yes	19,04	34/65	. NE	14-8		0.50 (0.37-0.99)
140	29/384	75/142	NE	18.4	101	8.37 (8.17-6.41)
Mediactory to last line of the					100	
Tes	23/84	40/74	NE	248.8		0.47 (0.17-0.80)
5. PM	30/206	NJ20P	NE	28.4	tet :	8.32 (0.20-0.49)
Type of multiple repairers						
1giG	16/133	35/138	NE	18.4	1.0.1	0.50 (0.17-0.12)
- tem	43/48	34/11	Pail.	11.8	1- - -C	0.04 (0.22-0.83)
- Setters fine light chain only	13/30	13/33	. NE	13.6	111100 111100 1110	0.09 (0.30-1.37)

POLLUX: PFS Subgroup Analysis


Dimopoulos MA, et al. N Engl J Med. 2016;375(14):1319-1331.


-Data updated at ASCO 2017: HR 0.19 (0.06-0.55); P = .00007 Mateos MV, et al. *J Clin Oncol*. 2017;35(suppl): Abstract 8033.

PANORAMA 1: Panobinostat + Bortezomib-Dex versus Bortezomib-Dex



NCCN National Comprehensive Cancer Network* NCCN Guidelines Version Multiple Myeloma	a 2.2018 <u>INCON Guidelines Index</u> Table of Contents Discussion
MYELOMA TI	HERAPY ^{14,12}
Therapy for Previously Treated Multiple Mye	loma (assess for response after each cycle)
Preferred Regimens • Repeat primary induction therapy (if relaps at >6 mo) • Bortezomibilenalidomide/dexamethasone • Carfilzomib /tenaidomide/dexamethasone (category 1) ¹⁹ • Carfilzomib /tenaidomide/dexamethasone (category 1) ¹²	 Daratumumab¹⁴/bortezomib/dexamethasone (category 1) Daratumumab¹⁴/lenalidomide/dexamethasone (category 1) Elotuzumab¹⁹/lenalidomide/dexamethasone (category 1)¹³ txazomib¹⁷/lenalidomide/dexamethasone (category 1)¹²
Other Recommended Reciments • Bendamustike/Dortezombid/examethasone • Bendamustike/Tenalidomid/e/dexamethasone • Bortezombid/examethasone • Bortezombid/examethasone • Bortezombid/examethasone • Bortezombid/examethasone • Carfilzomb ¹ /eyelophosphamide/dexamethasone • Carfilzomb ¹ /eyelophosphamide/dexamethasone • Carfilzomb ¹ /eyelophosphamide/dexamethasone • Cyclophosphamide/dexamethasone • Cyclophosphamide/dexamethasone • Daratumumab ^{14,16} • Lizzombibortezombidexamethasone • Lizzombib ¹⁷ /dexamethasone ⁸	Lxazomib/pomalidomide ²⁰ /dexamethasone Lenalidomide/dexamethasone ¹⁸ (category 1) ⁸ Panobinostat ¹⁹ (bortezomiblé xxamethasone (category 1) Panobinostat ¹⁹ (carlisomib ^{1,5} Panobinostat ¹⁹ (carlisomib ^{1,5} Pomalidomide ²⁰ (cyclophosphamide/dexamethasone Pomalidomide ²⁰ (cyclophosphamide/dexamethasone Pomalidomide ²⁰ (cortezomibidexamethasone Pomalidomide ²⁰ (corfilzomib ⁶ /dexamethasone Pomalidomide ²⁰ (carlizomib ⁶ /dexamethasone Pomalidomide ²⁰ (carlizomib ⁶ /dexamethasone
Useful in Certain Circumstances - Bendamustine • Dexamethasone/cyclophosphamide/etoposide/cisplatin (DCEP) ²¹	Dexamethasone/thalidomide/cisplatin/doxorubicin/ cyclophosphamide/etoposide (DT-PACE) ²⁵ = bortezomib (VTD- PACE) ²¹
"Solveted, but net induces of all regenens. Philippe avoints prophysics for patients instand with protessome inhibitors or duratumentab. Tablachanases holderson is a the patients invalued of administration. "Self-eners applies responsibilities with internationalized based freques. Therapeuties antiosapulation "Self-eners applies responsibilities and internationalized Compositionalized constraints and internationalized Compositionalized constraints and internationalized Compositionalized constraints and the standard therapy for patients attituting to patients "Compositionalized may be applied with double response. "Compositionalized may be prepared in the standard therapy for patients attitutions because, to be applied with the origination regineers in the standard of deviced relative or with "Chincic influe and thereor engineers primation" conditional patients and therapidemic relative or with "Way interfere with service/patient legiting and cause failed-positive indirect Coondition test (<u>Sites MPCIL-Ci</u>)	High-doise cyclophosphamide Jinter and a second and a second a
Note: All recommendations are category 24 unless otherwise indicated. Clinical Triats: NCCN believes that the best management of any patient with cancer is in a clinical Wears 2001, USOTIC National Comparisons Cover Interest, in: 2011 All right search The NCCN clustered and the Index	

Patient Case

- 52 year old woman develops lightheadedness/dizziness
- Laboratory studies show hyponatremia, anemia, elevated total protein
- SPEP: 5.07 g/dL, IgG lambda M-protein with total IgG 5660 mg/dl
- Skeletal survey: lucencies of the calvarium and humeri
- Bone marrow biopsy:
 - Hypercellular marrow with 80% plasmacytosis
 - Deletion 13, translocation (4:14)
- Receives RVD followed by ASCT and lenalidomide maintenance, achieves complete response post-ASCT
- Progresses based on increase in M-protein two years after ASCT, transitions to ixazomib plus lenalidomide and dexamethasone
- Best response to lxazomib plus len-dex is partial response. Progresses after 14 months on ixazomib plus len-dex.
- She then receives carfilzomib plus pomalidomide and dexamethasone. After best response of partial response, she progresses after 8 months.

THANK YOU!

- Our Patients
- The International Myeloma Society
- The meeting sponsors
 - Janssen
 - Celgene
 - Takeda
 - Amgen

Elderly'ish' patient with multiple myeloma

Case capsule-IMS educational workshop, Washington D.C.

Saurabh Zanwar, Research fellow, Mayo Clinic

History and presentation

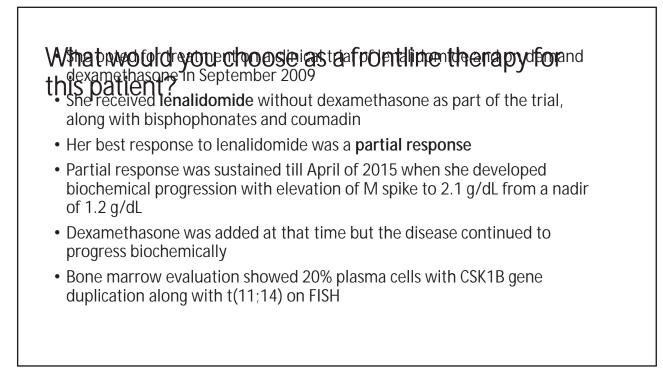
A 69 year old lady presented with complaints of new onset back pain and anemia in September 2009

Relevant past history:

- Pulmonary embolism one and a half years back; treated with warfarin for 6 months; thrombophilia work-up was negative
- History of fall twice-one antecedent to the PE and again one year later resulting in a pelvic fracture
- Dyslipidemia, HTN, Hypothyroidism-well controlled on medications
- Osteopenia

Baseline Evaluation	
• Hb 11.6 g/dL (dropped from 13.2 g/dL two months prior)	• Serum M spike: 4 g/dL; Serum IgG 5460 mg/dL
 Sr. Calcium 9.6 mg/dL Sr Creatinine: 0.9 mg/dL Sr. albumin: 4 g/dL; LFTs: WNL B2M: 3.84 ug/dL Bone survey: L3 and T8 compression; fracture of Left 3rd rib 	 SFLC: kappa: 18.4 mg/dL; lambda: 0.186 mg/dL; kappa:lambda ratio: 98.9 Bone marrow Bx: 70% plasma cells FISH: t(11;14)noted; Conventional cytogenetics: no abnormality

Diagnosis


- Multiple myeloma standard risk
 - ISS stage II
 - Salmon Durie Stage IIA
- ECOG 1 at presentation

Any additional information that you would want prior to planning therapy in this lady?

Evaluation of an elderly myeloma

- Comprehensive geriatric assessment
- Frailty index
- Any form of validated geriatric assessment

Is geriatric assessment a part of your routine practice for elderly myelomas?

What factors dictate treatment choice at relapse for an elderly fit patient?

Asymptomatic progression, ECOG PS of 0 and no end organ damage

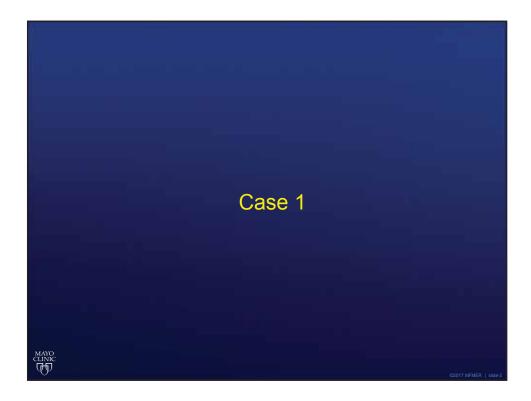
- Options of combination chemotherapy (CyBorD), ASCT and available clinical trials were discussed with the patient
- She opted for Venetoclax (ABT-199)-Dexamethasone as part of a clinical trial in June 2015
- Unfortunately she progressed biochemically within three months and was taken off the trial in Aug 2015

Further therapy

- She refused ASCT and opted for Cyclophosphamide-Bortezomib-Dexamethasone (CyBorD) in Aug 2015
- She completed 12 cycles in Aug 2016 with excellent tolerance and had a **partial response** with M spike of 1.0 g/dl
- She had no peripheral neuropathy at that time

Would you opt for any maintenance therapy in this patient at this point? If yes, with what?

Maintenance therapy


- She was started on a two weekly bortezomib regimen which was well tolerated
- Serum M protein remained stable on maintenance bortezomib for 8
 months
- She had biochemical disease progression in April 2017
 - 30% plasma cells in bone marrow
 - 1q duplication on FISH with t(11;14)
- She was started on **Daratumumab-Pomalidomide-Dexamethasone** in April 2017
- She is tolerating the treatment well so far and has achieved a partial response

Case Presentation: Elderly Patients with Multiple Myeloma

Surbhi Sidana, MBBS

International Myeloma Society Educational Workshop October 28th, 2017

Initial Presentation

- 88 year old lady diagnosed with multiple myeloma in December 2013 during evaluation of anemia
 - Hemoglobin: 9.6 g/dL
 - Calcium: 9.7 mg/dL
 - Creatinine: 1.2 mg/dL
 - Albumin: 3.4 g/dL

MAYC CLINI T

CLINIC

- Beta-2-microglobulin: 2.3
- M-Spike, IgG kappa: 2.3 g/dL
- Bone marrow: 55% plasma cells
- FISH: trisomy 7, 9, 11 and 15.
- Skeletal survey: Few indeterminate lesions

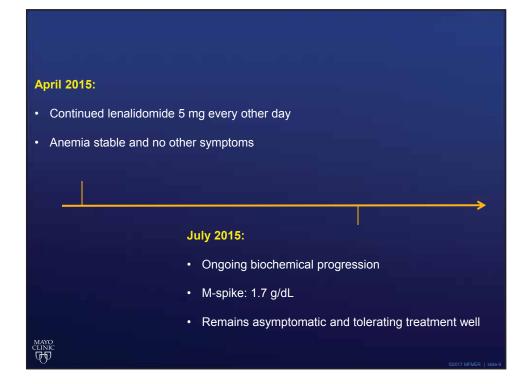
Other causes of anemia ruled out

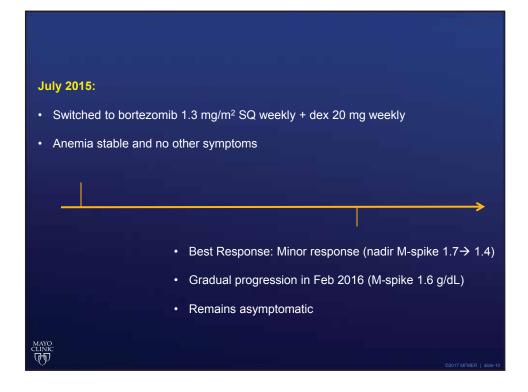
Relevant Medical History

- In relatively good health for her age
- Ambulating with cane/walker in preceding few months due to mild unsteadiness of gait, cause indeterminate
- Past Medical History
 - Hypertension, well-controlled
 - Mild diastolic dysfunction, grade 2/4
 - Grade 2 CKD, stable
 - Osteopenia
 - Hyperlipidemia

What would you recommend for further management?

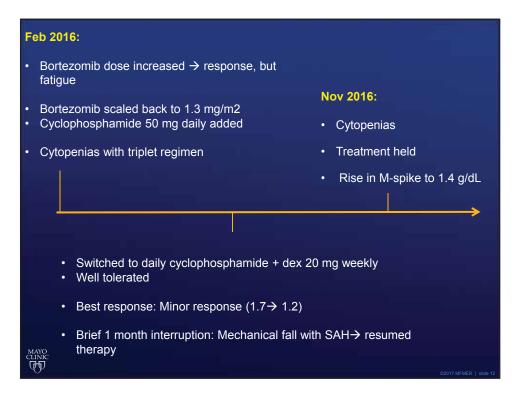
- Lenalidomide-dexamethasone
- Bortezomib-dexamethasone
- Dose reduced bortezomib-lenalidomide-dex
- Cyclophosphamide-bortezomib-dex
- Other chemotherapy regimen
- Supportive care only

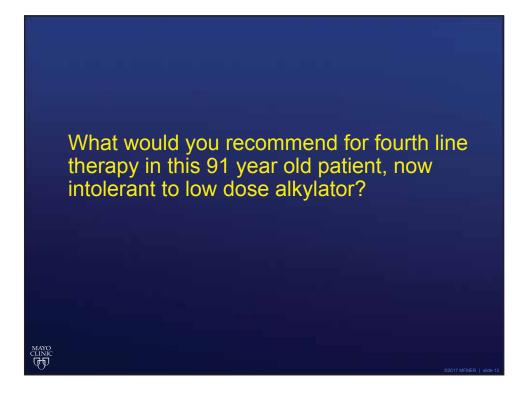



What would you recommend for this 90 year old patient gradually progressing on first line therapy?

Switch therapy

MAYO CLINIC


- Continue current therapy and monitor
- Increase dose of lenalidomide



What would you recommend for second biochemical progression in this elderly patient?

- Continue current approach
- Increase bortezomib dose
- Switch therapy

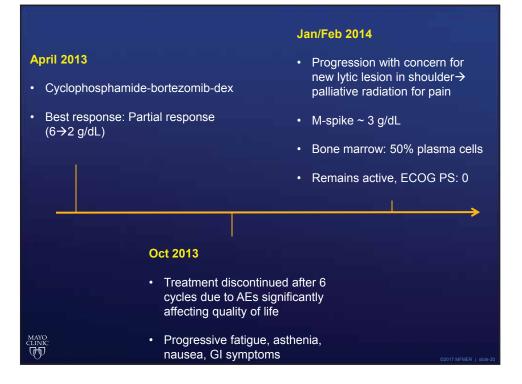
- Less intense, dose adjusted therapy
- Can receive multiple regimens, if appropriately selected
- Treatment can prolong survival meaningfully, with good quality of life

Initial Presentation

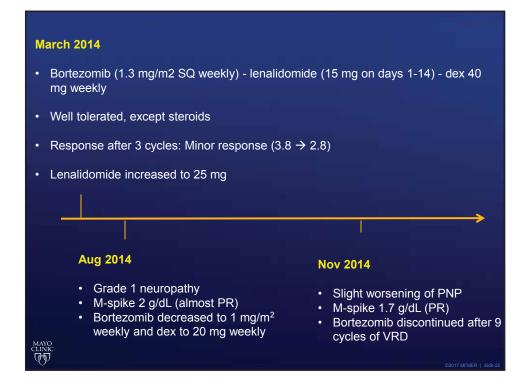
 75 year old gentleman diagnosed with multiple myeloma in April 2013 in setting of anemia, acute kidney injury, weight loss and bone pain

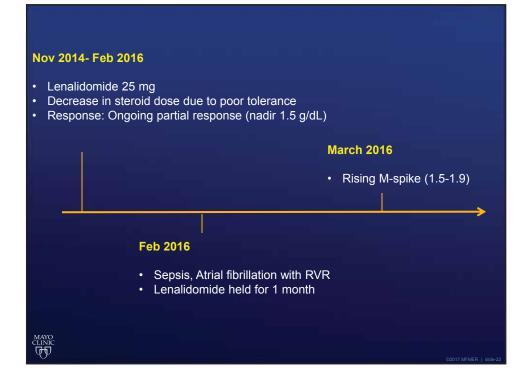
- Hemoglobin: 5.8 g/dL
- Calcium: 9.0 mg/dL
- Creatinine 1.5 mg/dL
- Albumin: 2.6 g/dL
- M-spike, IgG kappa: 6.1 g/dL
- Beta-2-microglobulin: 9.8 mg/dL
- Bone marrow aspirate: 90% plasma cells
- FISH: t(11;14)
- Skeletal survey: Diffuse lytic lesions

Revised ISS: Stage 2



- Was active prior to onset of symptoms
- Now with limited mobility from pain (thoracic compression fracture)
- Past Medical History
 - Hyperlipidemia
 - Osteoarthritis
 - GERD




What would you recommend for further management?

- Induction followed by transplant
- Lenalidomide-dexamethasone
- Bortezomib-dexamethasone
- Bortezomib-lenalidomide-dex
- Cyclophosphamide-bortezomib-dex
- Other chemotherapy regimen

