

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Daratumumab, Lenalidomide, and Dexamethasone (DRd) Versus Lenalidomide and Dexamethasone (Rd) in Relapsed or Refractory Multiple Myeloma (RRMM): Updated Efficacy and Safety Analysis of POLLUX^{*}

<u>Meletios A. Dimopoulos</u>,¹ Darrell White,² Lotfi Benboubker,³ Gordon Cook,⁴ Merav Leiba,⁵ James Morton,⁶ P Joy Ho,⁷ Kihyun Kim,⁸ Naoki Takezako,⁹ Sonali Trivedi,¹⁰ Kaida Wu,¹⁰ Tineke Casneuf,¹¹ Christopher Chiu,¹⁰ Jordan Schecter,¹² Philippe Moreau¹³

¹National and Kapodistrian University of Athens, Athens, Greece; ²Dalhousie University and QEII Health Sciences Centre, Halifax, Nova Scotia, Canada; ³Service d'Hématologie et Thérapie Cellulaire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire (CHRU), Tours, France; ⁴St James's Institute of Oncology, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, UK; ⁵Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; ⁶Icon Cancer Care, South Brisbane, QLD, Australia; ⁷Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; ⁸Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; ⁹Department of Hematology, National Hospital Organization Disaster Medical Center of Japan, Tachikawa, Japan; ¹⁰Janssen Research & Development, Spring House, PA, USA; ¹¹Janssen Research & Development, Beerse, Belgium; ¹²Janssen Research & Development, LLC, Raritan, NJ, USA; ¹³Hematology, University Hospital Hôtel-Dieu, Nantes, France.

Background

MYELOUTA SO

Daratumumab

Human IgGκ monoclonal antibody targeting CD38 with a direct on-tumor and immunomodulatory MoA¹⁰

Approved

- As **monotherapy** in many countries for heavily pretreated RRMM
- In combination with standard of care regimens in RRMM after ≥1 prior therapy in many countries

Efficacy

 Daratumumab induces rapid, deep, and durable responses in combination with a PI (bortezomib) or an IMiD (lenalidomide) in RRMM^{11,12}

1. DARZALEX [US PI], Horsham, PA: Janssen Biotech, Inc.; 2017. 2. Liszewski MK, et al. Adv Immunol. 1996;61:201-283. 3. Debets JM, et al. J Immunol. 1988;141(4):1197-1201. 4. Overdijk MB, et al. mABs. 2015;7(2):311-321. 5. Lokhorst HM, et al. NEJM. 2015;373(13):1207-1219. 6. Plesner T, et al. Oral presentation at: ASH; December 8-11, 2012; Atlanta, GA 7. Krejcik J, et al. Blood. 2016;128(3):384-394. 8. Adams H, et al. Poster presented at: ASH; December 3-6, 2016; San Diego, CA. 9. Chiu C, et al. Poster presented at: ASH; December 3-6, 2016; San Diego, CA. 10. Blair H. Drugs. 2017; doi: 10.1007/s40265-017-0837-7 (Epub). 11. Palumbo A, et al. NEJM. 2016;375(8):754-66. 12. Dimopoulos, MA et al. NEJM. 2016;375(14):1319-1331.

American Society of Hematology CDC, complement-dependent cytotoxicity; ADCC, antibody-dependent cellular cytotoxicity; ADCP, antibodydependent cellular phagocytosis; NK, natural killer; Ig, immunoglobulin; MoA, mechanism of action; RRMM, relapsed or refractory multiple myeloma; PI, proteasome inhibitor; IMiD, immunomodulatory drug.

POLLUX Study Design

Open-label, multicenter, randomized (1:1), active-controlled, phase 3 study

ISS. International Staging System; DRd, daratumumab/lenalidomide/dexamethasone; IV, intravenous; PO, oral; PD, progressive disease; Rd, lenalidomide/dexamethasone; PFS, progression-free survival; OS, overall survival; ORR, overall response rate; VGPR, very good partial response; CR, complete response; MRD, minimal residual disease.

Prior lenalidomide

American Society of Hematology

^aOn daratumumab dosing days, dexamethasone 20 mg was administered on the day of the infusion and 20 mg was administered the day after the infusion.

Baseline Characteristics (ITT)

Characteristic	DRd (n = 286)	Rd (n = 283)	Characteristic	DRd (n = 286)	Rd (n = 283)
Age, y Median (range) ≥75, %	65 (34-89) 10	65 (42-87) 12	Prior lines of therapy, % Median (range) 1	1 (1-11) 52 30	1 (1-8) 52 28
ISS, % ^a I II	48 33	50 30	2 3 >3	30 13 5	13 7
III	20	20	Prior ASCT, %	63	64
Median (range) time from diagnosis, y	3.48 (0.4-27.0)	3.95 (0.4-21.7)	Prior PI, %	86	86
Creatinine clearance (mL/min), % N >30-60 >60	279 28 71	281 23 77	Prior IMiD, % Prior lenalidomide, %	55 18	55 18
			Prior PI + IMiD, %	44	44
Cytogenetic profile, % ^b N Standard risk High risk	161 83 17	150 75 25	Refractory to bortezomib, %	21	21
			Refractory to last line of therapy, %	28	27

ITT, intent-to-treat; ASCT, autologous stem cell transplant.

American Society of Hematology

 ^{a}ISS stage was derived based on the combination of serum $\beta2\text{-microglobulin}$ and albumin.

^bCentralized analysis using next-generation sequencing. Patients with high risk had t(4;14), t(14;16), or del17p abnormalities.

Median follow-up: 32.9 months (range, 0 - 40.0 months) •

56% reduction in risk of progression/death for DRd versus Rd

American Society of Hematology

HR, hazard ratio; CI, confidence interval. ^aExploratory analyses based on clinical cut-off date of October 23, 2017. ^bKaplan-Meier estimate.

ORR and MRD-negative Rates^a

• Median follow-up: 32.9 months (range, 0 - 40.0 months)

Responses continued to deepen in the DRd group
Significantly higher (>3-fold) MRD-negative rates for DRd versus Rd

 \bullet

American Society of Hematology

sCR, stringent complete response; PR, partial response. Primary analysis reported in Dimopoulos MA, et al. *N Engl J Med.* 2016;375(14):1319-1331. ^aExploratory analyses based on clinical cutoff date of October 23, 2017; ^b*P* <0.0001 for DRd versus Rd.

PFS by Depth of Response

Deeper responses were more common on DRd and were associated with longer PFS
MRD negativity was associated with longer PFS

Time to MRD Negativity (10⁻⁵)

MRD negativity occurs more rapidly with DRd and increases over time

More than half of DRd patients have not yet started subsequent therapy

PFS With Subsequent Line of Therapy (PFS2)

DRd does not negatively impact outcomes of subsequent therapy

American Society of Hematology ^aKaplan-Meier estimate.

Overview of Safety Profile

	All grades (≥25%)ª		Grade 3/4 (≥5%)ª	
TEAE, %	DRd (n = 283)	Rd (n = 281)	DRd (n = 283)	Rd (n = 281)
Hematologic Neutropenia Febrile neutropenia Anemia Thrombocytopenia Lymphopenia	62 6 38 29 7	47 3 41 31 6	54 6 16 14 6	41 3 22 16 4
Nonhematologic Diarrhea Upper respiratory tract infection Viral upper respiratory tract infection Fatigue Cough Constipation Muscle spasms Nausea Pneumonia	56 41 31 38 34 31 29 27 24	34 27 19 31 15 27 21 18 16	7 1 0 6 0.4 1 1 2 14	4 1 0 4 0.7 1 0.7 10

- Median duration of treatment: 30.4 months for DRd versus 16.0 months for Rd
- Discontinuations due to TEAEs were similar (13% in both arms)
- Rate of grade 3/4 infections: 39% for DRd versus 26% for Rd
- No differences in rates of SPMs between treatment groups (7% of patients in both groups)
 - Most common SPM in both arms was cutaneous, noninvasive SCC (2% each)

Safety profile remains unchanged with longer follow-up

American Society *of* Hematology

TEAE, treatment-emergent adverse event; SPM, secondary primary malignancy; SCC, squamous cell carcinoma. ^aCommon TEAEs listed are either ≥25% all grade OR ≥5% grade 3/4.

Conclusions

MYELOZA MANANA MYELOZA SO OLIVYA HILINO

- DRd continues to significantly improve PFS with longer follow-up
- DRd induces deep and durable responses
- More patients receiving DRd achieved MRD negativity versus Rd
- MRD negativity occurs more rapidly with DRd and increases over time
- DRd does not negatively impact outcomes of subsequent therapy
- Safety profile remains unchanged with longer follow-up

Updated findings continue to support the use of DRd in patients with RRMM

Acknowledgments

POLLUX 18 countries

- Patients who participated in these studies and their families
- Staff members at the study sites
- Data and safety monitoring committee
- Staff members involved in data collection and analyses
 - Jamie Bald, Christopher Velas, Phyllis Wolf, Huiling Pei, David Soong, Priya Ramaswami, and Regina Jakacki

This study (ClinicalTrials.gov Identifier: NCT02076009) was funded by Janssen Research & Development, LLC. Medical writing and editorial support were provided by Kimberly Carmony, PhD (MedErgy) and were funded by Janssen Global Services, LLC.

